Bier Spheres and Posets
نویسندگان
چکیده
In 1992 Thomas Bier presented a strikingly simple method to produce a huge number of simplicial (n− 2)-spheres on 2n vertices as deleted joins of a simplicial complex on n vertices with its combinatorial Alexander dual. Here we interpret his construction as giving the poset of all the intervals in a boolean algebra that “cut across an ideal.” Thus we arrive at a substantial generalization of Bier’s construction: the Bier posets Bier(P, I) of an arbitrary bounded poset P of finite length. In the case of face posets of PL spheres this yields cellular “generalized Bier spheres.” In the case of Eulerian or Cohen-Macaulay posets P we show that the Bier posets Bier(P, I) inherit these properties. In the boolean case originally considered by Bier, we show that all the spheres produced by his construction are shellable, which yields “many shellable spheres”, most of which lack convex realization. Finally, we present simple explicit formulas for the g-vectors of these simplicial spheres and verify that they satisfy a strong form of the g-conjecture for spheres. ∗Research partially supported by the European Commission’s IHRP Programme, grant HPRN-CT2001-00272, “Algebraic Combinatorics in Europe” ∗∗Research supported by the Deutsche Forschungsgemeinschaft within the European graduate program “Combinatorics, Geometry, and Computation” (GRK 588/2) ∗∗∗Partially supported by Deutsche Forschungs-Gemeinschaft, via the DFG Research Center “Mathematics in the Key Technologies” (FZT86), the Research Group “Algorithms, Structure, Randomness” (Project ZI 475/3), and a Leibniz grant (ZI 475/4), and by the German Israeli Foundation (G.I.F.)
منابع مشابه
Nested Set Complexes for Posets and the Bier Construction
We generalize the concept of combinatorial nested set complexes to posets and exhibit the topological relationship between the arising nested set complexes and the order complex of the underlying poset. In particular, a sufficient condition is given so that this relationship is actually a subdivision. We use the results to generalize the proof method of Čukić and Delucchi, so far restricted to ...
متن کاملSimplicial Shellable Spheres via Combinatorial Blowups
The construction of the Bier sphere Bier(K) for a simplicial complex K is due to Bier (1992). Björner, Paffenholz, Sjöstrand and Ziegler (2005) generalize this construction to obtain a Bier poset Bier(P, I) from any bounded poset P and any proper ideal I ⊆ P . They show shellability of Bier(P, I) for the case P = Bn, the boolean lattice, and thereby obtain ‘many shellable spheres’ in the sense ...
متن کاملThe cd -index of fans and posets
The number of flags in a complete fan, or more generally in an Eulerian poset, is encoded in the cd-index. We prove the non-negativity of the cd-index for complete fans, regular CW -spheres and Gorenstein* posets.
متن کاملFinite Three Dimensional Partial Orderswhich Are Not Sphere
Given a partially ordered set P = (X; P), a function F which assigns to each x 2 X a set F (x) so that x y in P if and only if F (x) F (y) is called an inclusion representation. Every poset has such a representation, so it is natural to consider restrictions on the nature of the images of the function F. In this paper, we consider inclusion representations assigning to each x 2 X a sphere in R ...
متن کاملSign-Graded Posets, Unimodality of W-Polynomials and the Charney-Davis Conjecture
We generalize the notion of graded posets to what we call sign-graded (labeled) posets. We prove that the W -polynomial of a sign-graded poset is symmetric and unimodal. This extends a recent result of Reiner and Welker who proved it for graded posets by associating a simplicial polytopal sphere to each graded poset. By proving that the W -polynomials of sign-graded posets has the right sign at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 34 شماره
صفحات -
تاریخ انتشار 2005