Contrasting the individual reactive pathways in protein unfolding and disulfide bond reduction observed within a single protein.
نویسندگان
چکیده
Identifying the dynamics of individual molecules along their reactive pathways remains a major goal of modern chemistry. For simple chemical reactions, the transition state position is thought to be highly localized. Conversely, in the case of more complex reactions involving proteins, the potential energy surfaces become rougher, resulting in heterogeneous reaction pathways with multiple transition state structures. Force-clamp spectroscopy experimentally probes the individual reaction pathways sampled by a single protein under the effect of a constant stretching force. Herein, we examine the distribution of conformations that populate the transition state of two different reactions; the unfolding of a single protein and the reduction of a single disulfide bond, both occurring within the same single protein. By applying the recently developed static disorder theory, we quantify the variance of the barrier heights, σ(2), governing each distinct reaction. We demonstrate that the unfolding of the I27 protein follows a nonexponential kinetics, consistent with a high value of σ(2) ∼ 18 (pN nm)(2). Interestingly, shortening of the protein upon introduction of a rigid disulfide bond significantly modulates the disorder degree, spanning from σ(2) ∼ 8 to ∼21 (pN nm)(2). These results are in sharp contrast with the exponential distribution of times measured for an S(N)2 chemical reaction, implying the absence of static disorder σ(2) ∼ 0 (pN nm)(2). Our results demonstrate the high sensitivity of the force-clamp technique to capture the signatures of disorder in the individual pathways that define two distinct force-induced reactions, occurring within the core of a single protein.
منابع مشابه
Direct observation of disulfide isomerization in a single protein
Photochemical uncaging techniques use light to release active molecules from otherwise inert compounds. Here we expand this class of techniques by demonstrating the mechanical uncaging of a reactive species within a single protein. We proved this novel technique by capturing the regiospecific reaction between a thiol and a vicinal disulfide bond. We designed a protein that includes a caged cyst...
متن کاملAltered thiol chemistry in human amyotrophic lateral sclerosis-linked mutants of superoxide dismutase 1.
Neurodegenerative diseases share a common characteristic, the presence of intracellular or extracellular deposits of protein aggregates in nervous tissues. Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disorder, which affects preferentially motoneurons. Changes in the redox state of superoxide dismutase 1 (SOD1) are associated with the onset and development of fami...
متن کاملChemistry on a single protein, vascular cell adhesion molecule-1, during forced unfolding.
Proteins of many types experience tensile forces in their normal function, and vascular cell adhesion molecule-1 (VCAM-1) is typical in this. VCAM has seven Ig domains, and each has a disulfide bond (-S-S-) buried in its core that covalently stabilizes about half of each domain against unfolding. VCAM is extended here by single molecule atomic force microscopy in the presence or absence of redu...
متن کاملDirect quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein.
Understanding protein dynamics requires a comprehensive knowledge of the underlying potential energy surface that governs the motion of each individual protein molecule. Single molecule mechanical studies have provided the unprecedented opportunity to study the individual unfolding pathways along a well defined coordinate, the end-to-end length of the protein. In these experiments, unfolding re...
متن کاملThe Single Nucleotide Polymorphisms in the C-reactive Protein Gene: are they Biomarkers of Cardiovascular Risk?
Recent pre-clinical and clinical studies have revealed the C-reactive protein gene (CRP) is related to the degree of acute rise in plasma C-reactive protein (CRP) levels. Moreover, single nucleotide polymorphisms (SNPs) in the CRP gene could associate with increased risk of cancer, atherosclerosis, diabetes mellitus, bowel disease, rheumatoid arthritis, psoriasis, obstructive pulmonary disease,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 9 شماره
صفحات -
تاریخ انتشار 2011