Active Learning and Proofreading for Delineation of Curvilinear Structures
نویسندگان
چکیده
Many state-of-the-art delineation methods rely on supervised machine learning algorithms. As a result, they require manually annotated training data, which is tedious to obtain. Furthermore, even minor classification errors may significantly affect the topology of the final result. In this paper we propose a generic approach to addressing both of these problems by taking into account the influence of a potential misclassification on the resulting delineation. In an Active Learning context, we identify parts of linear structures that should be annotated first in order to train a classifier effectively. In a proofreading context, we similarly find regions of the resulting reconstruction that should be verified in priority to obtain a nearly-perfect result. In both cases, by focusing the attention of the human expert on potential classification mistakes which are the most critical parts of the delineation, we reduce the amount of required supervision. We demonstrate the effectiveness of our approach on microscopy images depicting blood vessels and neurons.
منابع مشابه
The Effects of Cooperative Language Learning Strategies on Learning Active and Passive Structures among Iranian EFL Learners
This study aims at investigating the effects of cooperative language learning on learning active and passive structures among Iranian EFL students. The participants of the study were 60 high school students that were selected from third grade of Barikbin high school in Qazvin. All of the participants were male. Their level of proficiency was intermediate. Then the participants were divided into...
متن کاملBeyond the Pixel-Wise Loss for Topology-Aware Delineation
Delineation of curvilinear structures is an important problem in Computer Vision with multiple practical applications. With the advent of Deep Learning, many current approaches on automatic delineation have focused on finding more powerful deep architectures, but have continued using the habitual pixel-wise losses such as binary crossentropy. In this paper we claim that pixel-wise losses alone ...
متن کاملMyocardial fibrosis delineation in late gadolinium enhancement images of Hypertrophic Cardiomyopathy patients using deep learning methods
Introduction: Accurate delineation of myocardial fibrosis in Late Gadolinium Enhancement on Cardiac Magnetic Resonance (LGE-CMR) has a crucial role in the assessment and risk stratification of HCM patients. As this is time-consuming and requires expertise, automation can be essential in accelerating this process. This study aims to use Unet-based deep learning methods to automate the mentioned ...
متن کاملDetection of Curved Lines with B-COSFIRE Filters: A Case Study on Crack Delineation
The detection of curvilinear structures is an important step for various computer vision applications, ranging from medical image analysis for segmentation of blood vessels, to remote sensing for the identification of roads and rivers, and to biometrics and robotics, among others. This is a nontrivial task especially for the detection of thin or incomplete curvilinear structures surrounded with...
متن کاملSemi-Automated Reconstruction of Curvilinear Structures in Noisy 2D Images and 3D Image Stacks
We propose a new approach to semi-automated delineation of curvilinear structures in a wide range of imaging modalities. Earlier approaches lack robustness to imaging noise, do not provide accurate radius estimates for the structures and operate only on single channel images. In contrast, ours makes use of the color information, when available, and generates accurate and smooth paths with minim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017