Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley
نویسندگان
چکیده
Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7-9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene (vvy) was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.
منابع مشابه
Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system.
We have previously generated a large pool of T-DNA insertional lines in rice. In this study, we screened those T-DNA pools for rice mutants that had defective chlorophylls. Among the 1,995 lines examined in the T2 generation, 189 showed a chlorophyll-deficient phenotype that segregated as a single recessive locus. Among the mutants, 10 lines were beta-glucuronidase (GUS)-positive in the leaves....
متن کاملIsolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کاملStudies of growth & metabolism of a barley mutant lacking chlorophyll b.
In an earlier paper (7) the chlorophyll composition of a number of chlorina mutants of barley obtained from D. W. Robertson (10) were described and it was then pointed out that one of the mutants appeared to be entirely lacking in chlorophyll b. Thus, it was of considerable interest to learn whether the chlorophyll b deficiency was affecting the photosynthetic activity of this mutant. Comparati...
متن کاملCharacterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis.
During thylakoid membrane biogenesis, chlorophyll (Chl) biosynthesis and the accumulation of Chl-binding proteins are tightly linked, light-regulated processes. We have investigated the consequences faced by mutant plants with defects in Chl biosynthesis by studying a series of five homeologous allelic chlorina mutants in wheat (Triticum) and one phenotypically related barley (Hordeum vulgare) ...
متن کاملCharacterization of a Family of Chlorophyll - Deficient Wheat ( Triticum ) and Barley ( Hordeum vulgare ) Mutants with Defects in the Magnesium - lnsertion Step of Chlorophyll Biosynthesis ’
During thylakoid membrane biogenesis, chlorophyll (Chl) biosynthesis and the accumulation of Chl-binding proteins are tightly linked, light-regulated processes. We have investigated the consequences faced by mutant plants with defects in Chl biosynthesis by studying a series of five homeologous allelic chlorina mutants in wheat (Triticum) and one phenotypically related barley (Hordeum vulgare) ...
متن کامل