Muscle degeneration without mechanical injury in sarcoglycan deficiency.

نویسندگان

  • A A Hack
  • L Cordier
  • D I Shoturma
  • M Y Lam
  • H L Sweeney
  • E M McNally
چکیده

In humans, mutations in the genes encoding components of the dystrophin-glycoprotein complex cause muscular dystrophy. Specifically, primary mutations in the genes encoding alpha-, beta-, gamma-, and delta-sarcoglycan have been identified in humans with limb-girdle muscular dystrophy. Mice lacking gamma-sarcoglycan develop progressive muscular dystrophy similar to human muscular dystrophy. Without gamma-sarcoglycan, beta- and delta-sarcoglycan are unstable at the muscle membrane and alpha-sarcoglycan is severely reduced. The expression and localization of dystrophin, dystroglycan, and laminin-alpha2, a mechanical link between the actin cytoskeleton and the extracellular matrix, appears unaffected by the loss of sarcoglycan. We assessed the functional integrity of this mechanical link and found that isolated muscles lacking gamma-sarcoglycan showed normal resistance to mechanical strain induced by eccentric muscle contraction. Sarcoglycan-deficient muscles also showed normal peak isometric and tetanic force generation. Furthermore, there was no evidence for contraction-induced injury in mice lacking gamma-sarcoglycan that were subjected to an extended, rigorous exercise regimen. These data demonstrate that mechanical weakness and contraction-induced muscle injury are not required for muscle degeneration and the dystrophic process. Thus, a nonmechanical mechanism, perhaps involving some unknown signaling function, likely is responsible for muscular dystrophy where sarcoglycan is deficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

γ-Sarcoglycan Deficiency Leads to Muscle Membrane Defects and Apoptosis Independent of Dystrophin

gamma-Sarcoglycan is a transmembrane, dystrophin-associated protein expressed in skeletal and cardiac muscle. The murine gamma-sarcoglycan gene was disrupted using homologous recombination. Mice lacking gamma-sarcoglycan showed pronounced dystrophic muscle changes in early life. By 20 wk of age, these mice developed cardiomyopathy and died prematurely. The loss of gamma-sarcoglycan produced sec...

متن کامل

Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice

Limb-girdle muscular dystrophy type 2D (LGMD 2D) is an autosomal recessive disorder caused by mutations in the alpha-sarcoglycan gene. To determine how alpha-sarcoglycan deficiency leads to muscle fiber degeneration, we generated and analyzed alpha-sarcoglycan- deficient mice. Sgca-null mice developed progressive muscular dystrophy and, in contrast to other animal models for muscular dystrophy,...

متن کامل

Functional characteristics of dystrophic skeletal muscle: insights from animal models.

Muscular dystrophies are a clinically and genetically heterogeneous group of disorders that show myofiber degeneration and regeneration. Identification of animal models of muscular dystrophy has been instrumental in research on the pathogenesis, pathophysiology, and treatment of these disorders. We review our understanding of the functional status of dystrophic skeletal muscle from selected ani...

متن کامل

Collagen VI deficiency reduces muscle pathology, but does not improve muscle function, in the γ-sarcoglycan-null mouse

Muscular dystrophy is characterized by progressive skeletal muscle weakness and dystrophic muscle exhibits degeneration and regeneration of muscle cells, inflammation and fibrosis. Skeletal muscle fibrosis is an excessive deposition of components of the extracellular matrix including an accumulation of Collagen VI. We hypothesized that a reduction of Collagen VI in a muscular dystrophy model th...

متن کامل

Genetic epidemiology of muscular dystrophies resulting from sarcoglycan gene mutations.

BACKGROUND The autosomal recessive limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous muscle diseases characterised by progressive proximal limb muscle weakness. Six different loci have been mapped and pathogenetic mutations in the genes encoding the sarcoglycan complex components (alpha-, beta-, gamma-, and delta-sarcoglycan) have been documented. LGMD patients a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 19  شماره 

صفحات  -

تاریخ انتشار 1999