Hetero‐trans‐β‐glucanase, an enzyme unique to Equisetum plants, functionalizes cellulose
نویسندگان
چکیده
Cell walls are metabolically active components of plant cells. They contain diverse enzymes, including transglycanases (endotransglycosylases), enzymes that 'cut and paste' certain structural polysaccharide molecules and thus potentially remodel the wall during growth and development. Known transglycanase activities modify several cell-wall polysaccharides (xyloglucan, mannans, mixed-linkage β-glucan and xylans); however, no transglycanases were known to act on cellulose, the principal polysaccharide of biomass. We now report the discovery and characterization of hetero-trans-β-glucanase (HTG), a transglycanase that targets cellulose, in horsetails (Equisetum spp., an early-diverging genus of monilophytes). HTG is also remarkable in predominantly catalysing hetero-transglycosylation: its preferred donor substrates (cellulose or mixed-linkage β-glucan) differ qualitatively from its acceptor substrate (xyloglucan). HTG thus generates stable cellulose-xyloglucan and mixed-linkage β-glucan-xyloglucan covalent bonds, and may therefore strengthen ageing Equisetum tissues by inter-linking different structural polysaccharides of the cell wall. 3D modelling suggests that only three key amino acid substitutions (Trp → Pro, Gly → Ser and Arg → Leu) are responsible for the evolution of HTG's unique specificity from the better-known xyloglucan-acting homo-transglycanases (xyloglucan endotransglucosylase/hydrolases; XTH). Among land plants, HTG appears to be confined to Equisetum, but its target polysaccharides are widespread, potentially offering opportunities for enhancing crop mechanical properties, such as wind resistance. In addition, by linking cellulose to xyloglucan fragments previously tagged with compounds such as dyes or indicators, HTG may be useful biotechnologically for manufacturing stably functionalized celluloses, thereby potentially offering a commercially valuable 'green' technology for industrially manipulating biomass.
منابع مشابه
Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase
Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood - details that would promote understanding of MXE's role in vivo and enable its full technological exploitatio...
متن کاملProduction and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia.
AIM This study aims to produce and assay cellulolytic enzyme activity (endo-(1,4)-β-D-glucanase, exo-(1,4)-β-D-glucanase, and β-glucosidase, at optimum temperature and optimum pH) of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya Abbatoir, Indonesia. MATERIALS AND METHODS To produce enzyme from a single colony of E. cloacae WPL 214, 98 × 10(10) CFU/ml of isola...
متن کاملEnzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose
BACKGROUND The complete degradation of the cellulose requires the synergistic action of endo-β-glucanase, exo-β-glucanase, and β-glucosidase. But endo-β-glucanase and exo-β-glucanase can be recovered by solid-liquid separation in cellulose hydrolysis by their cellulose binding domain (CBD), however, the β-glucosidases cannot be recovered because of most β-glucosidases without the CBD, so additi...
متن کاملBiochemical Characterization of Recombinant Thermostable Cohnella sp. A01 β-Glucanase
Background: Typically, non-cellulytic glucanase, including fungi and yeast cell wall hydrolyzing enzymes, are released by some symbiotic fungi and plants during the mycoparasitic fungi attack on plants. These enzymes are known as the defense mechanisms of plants. This study intends to investigate the biochemical properties of β-1,6-glucanase (bg16M) from native thermophilic bacteria, Cohne...
متن کاملFibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity
BACKGROUND Recently, in order to improve the resistance of flax plants to pathogen infection, transgenic flax that overproduces β-1,3-glucanase was created. β-1,3-glucanase is a PR protein that hydrolyses the β-glucans, which are a major component of the cell wall in many groups of fungi. For this study, we used fourth-generation field-cultivated plants of the Fusarium -resistant transgenic lin...
متن کامل