Properties of convergent thalamocortical and intracortical synaptic potentials in single neurons of neocortex.
نویسندگان
چکیده
We explored differences in the properties of convergent afferent inputs to single neurons in the barrel area of the neocortex. Thalamocortical slices were prepared from mature mice. Recordings were made from neurons in layer V, and either thalamocortical afferents or horizontal intracortical axons were stimulated. Monosynaptic EPSPs from both sources had latencies shorter than 1.8 msec and low shape variance. Disynaptic thalamocortical IPSPs had latencies longer than 1.8 msec. All neuronal types, as defined by intrinsic firing patterns, received both thalamocortical and intracortical monosynaptic input. The shape parameters (rate of rise and half-width) of monosynaptic EPSPs from the two inputs did not differ significantly. The rate of rise of EPSPs varied considerably across cells, but the rates of rise of thalamocortical and intracortical EPSPs onto single cells were strongly correlated. The relative thresholds for activation of synaptic excitation and inhibition were strikingly different between the two tracts: thalamocortical stimulation induced GABAA-dependent IPSPs at stimulus intensities equal to or less than those required for evoking EPSPs in 35% (24 of 68) of the cells. In contrast, the threshold response to intracortical stimulation was always an EPSP, and only stronger stimuli could generate di- or polysynaptic IPSPs. We suggest that postsynaptic factors may tend to equalize the waveforms of EPSPs from thalamocortical and intracortical synapses onto single neurons. A major difference between the two convergent tracts is that the thalamocortical pathway much more effectively activates feedforward inhibitory circuits than does the horizontal intracortical pathway.
منابع مشابه
Cortex is driven by weak but synchronously active thalamocortical synapses.
Sensory stimuli reach the brain via the thalamocortical projection, a group of axons thought to be among the most powerful in the neocortex. Surprisingly, these axons account for only approximately 15% of synapses onto cortical neurons. The thalamocortical pathway might thus achieve its effectiveness via high-efficacy thalamocortical synapses or via amplification within cortical layer 4. In rat...
متن کاملImpact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs.
The neocortex generates short epochs of persistent activity called up states, which are associated with changes in cellular and network excitability. Using somatosensory thalamocortical slices, we studied the impact of persistent cortical activity during spontaneous up states on intrinsic cellular excitability (input resistance) and on excitatory synaptic inputs of cortical cells. At the intrin...
متن کاملFast-spike interneurons and feedforward inhibition in awake sensory neocortex.
'Fast-spike' interneurons of layer 4 mediate thalamocortical feedforward inhibition and can, with some confidence, be identified using extracellular methods. In somatosensory barrel cortex of awake rabbits, these 'suspected inhibitory interneurons' (SINs) have distinct receptive field properties: they respond to vibrissa displacement with very high sensitivity and temporal fidelity. However, th...
متن کاملShort-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex.
Layer 6 is the main source of neocortical connections back to specific thalamic nuclei. Corticothalamic (CT) systems play an important role in shaping sensory input, but little is known about the functional circuitry that generates CT activity. We recorded from the two main types of neurons in layer 6, regular-spiking (RS; pyramidal neurons) and fast-spiking (FS; inhibitory interneurons) cells ...
متن کاملSpike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.
The intracortical and thalamocortical synchronization of spontaneously occurring or bicuculline-induced seizures, consisting of spike-wave (SW) or polyspike-wave (PSW) complexes at 2-3 Hz and fast runs at 10-15 Hz, was investigated in cats under ketamine-xylazine anesthesia. We used single and dual simultaneous intracellular recordings from cortical areas 5 and 7, and extracellular recordings o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 20 شماره
صفحات -
تاریخ انتشار 1996