Extremely stringent activation of p16INK4a prevents immortalization of uterine cervical epithelial cells without human papillomavirus oncogene expression

نویسندگان

  • Su Hang
  • Agnes F.Y. Tiwari
  • Hextan Y.S. Ngan
  • Yim-Ling Yip
  • Annie L.M. Cheung
  • Sai Wah Tsao
  • Wen Deng
چکیده

Cervical epithelial cell immortalization with defined genetic factors without viral oncogenes has never been reported. Here we report that HPV-negative cervical epithelial cells failed to be immortalized by telomerase activation or the combination of p53 knockdown and telomerase activation. Under those conditions, p16INK4a expression was always elevated during the late stage of limited cell lifespan, suggesting that cervical epithelial cells possess an intrinsic property of uniquely stringent activation of p16INK4a, which may offer an explanation for the rarity of HPV-negative cervical cancer. Combining p16INK4a knockdown with telomerase activation resulted in efficient immortalization of HPV-negative cervical epithelial cells under ordinary culture conditions. Compared with the HPV16-E6E7-immortalized cell lines derived from the same primary cell sources, the novel HPV-negative immortalized cell lines had lower degrees of chromosomal instability, maintained more sensitive p53/p21 response to DNA damage, exhibited more stringent G2 checkpoint function, and were more resistant to replication-stress-induced genomic instability. The newly immortalized HPV-negative cervical epithelial cell lines were non-tumorigenic in nude mice. The cell lines can be used not only as much-needed HPV-negative non-malignant cell models but also as starting models that can be genetically manipulated in a stepwise fashion to investigate the roles of defined genetic alterations in the development of HPV-negative cervical cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abrogation of the retinoblastoma tumor suppressor checkpoint during keratinocyte immortalization is not sufficient for induction of centrosome-mediated genomic instability.

Deregulation of the retinoblastoma (pRB) tumor suppressor pathway and telomerase activation have been identified as rate-limiting steps for immortalization of primary human epithelial cells. However, additional molecular aberrations including p53 inactivation, ras activation, and deregulation of protein phosphatase 2A activity are necessary for full transformation of immortalized epithelial cel...

متن کامل

Immortalization of primary human prostate epithelial cells by c-Myc.

A significant percentage of prostate tumors have amplifications of the c-Myc gene, but the precise role of c-Myc in prostate cancer is not fully understood. Immortalization of human epithelial cells involves both inactivation of the Rb/p16INK4a pathway and telomere maintenance, and it has been recapitulated in culture by expression of the catalytic subunit of telomerase, hTERT, in combination w...

متن کامل

Developing Michigan Cancer Foundation 7 Cells with Stable Expression of E7 Gene of Human Papillomavirus Type 16

Background: Human papillomavirus (HPV) is responsible for the development of cervical neoplasia.  Infection with human papillomavirus type 16 (HPV-16) is a major risk factor for the development of cervical cancer. The virus encodes three oncoproteins (E5, E6 and E7), of which, the E7 oncoprotein is the major protein involved in cell immortalization and transformation o...

متن کامل

Immortalization by human papillomavirus type 16 alters retinoid regulation of human ectocervical epithelial cell differentiation.

Human cervical cells are a primary site of papillomavirus infection and 90% of all cervical tumors are positive for human papillomavirus (HPV) DNA. Over one-half million cases of HPV-associated cervical, vulvar, and penile cancers are reported per year. Yet, in spite of the magnitude of this problem, the effects of HPV infection on cervical cell growth and differentiation are not well character...

متن کامل

Entrance of the Tat protein of HIV-1 into human uterine cervical carcinoma cells causes upregulation of HPV-E6 expression and a decrease in p53 protein levels

The infection of uterine cervical epithelial cells by oncogenic, high-risk human papilloma viruses (HR-HPVs) may lead to the development of cervical carcinoma. Of note, the incidence of this tumor is significantly increased in women infected by both HR-HPV and human immunodeficiency virus (HIV)-1. In this regard, previous studies have linked the HIV-1 Tat protein, a trans-activator of viral gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016