Adaptive restoration of complex geometry parts through reverse engineering application

نویسندگان

  • Jian Gao
  • Xin Chen
  • Detao Zheng
  • Oguzhan Yilmaz
  • Nabil N. Z. Gindy
چکیده

After a certain number of hours of running, no two mechanical components are completely the same due to normal wear or foreign object damage. A nominal CAD model from a component designer is different from its corresponding worn one and therefore cannot be directly used for tool path generation for build up and machining repair processes. This is the main reason that most repair process used for complex geometry parts, such as gas turbine blades, is currently carried out manually and is called the ‘‘Black Art’’. This paper proposes a defects-free model-based repair strategy to generate correct tool paths for build up process and machining process adaptive to each worn component through the reverse engineering application. Based on 3D scanning data, a polygonal modelling approach is introduced in this paper to rapidly restore worn parts for direct use of welding, machining and inspection processes. With this nominal model, this paper presents the procedure to accurately define and extract repair error, repair volume and repair patch geometry for the tool path generation, which is adaptive to each individual part. The tool paths are transferred to a CNC machine for the repairing trials. Further research work is performed on repair geometry extraction algorithm and repair module development within the reverse engineering environment. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing

Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...

متن کامل

Investigation of Effective Parameters of the Two-Layer Sheet Hydroforming Process for Hollow Parts with Complex Geometry

AbstractHydroforming process is a deep stretching process only with the difference that a fluid is used instead of the mandrel. This paper investigates the hydroforming process of non-cylindrical and non-spherical geometries using finite element analysis software to calculate the influences of effective process parameters such as the coefficient of friction between the surfaces and the pressure...

متن کامل

Enhancement of vehicle stability by adaptive fuzzy and active geometry suspension system

In this paper, the enhancement of vehicle stability and handling is investigated by control of the active geometry suspension system (AGS). This system could be changed through control of suspension mounting point’s position in the perpendicular direction to wishbone therefore the dynamic is alternative and characteristics need to change. For this purpose, suitable controller needs to change...

متن کامل

Cavity Vertex Regeneration through Optimal Energy Model for Restoration of Worn Parts

Restoration of worn parts is a key technique in remanufacturing engineering. It is also a popular research topic in the domain of sustainable manufacturing. To tackle the difficult problem of obtaining a reference model for repair of worn parts, this paper proposed a novel approach to regenerate the vertices over the worn cavity. After a brief description of the repair process, this paper focus...

متن کامل

Application of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process

Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in Engineering Software

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2006