Mixing in manipulated turbulence
نویسندگان
چکیده
A new computational framework for the simulation of turbulent flow through complex objects and along irregular boundaries is presented. This is motivated by the application of metal foams in compact heat-transfer devices, or as catalyst substrates in process-engineering. The flow-consequences of such complicated objects are incorporated by adding explicit multiscale forcing to the Navier–Stokes equations. The forcing represents the simultaneous agitation of a wide spectrum of length-scales when flow passes through the complex object. Two types of forcing procedures are investigated; with reference to the collection of forced modes these procedures are classified as ‘constant-energy’ or ‘constant-energy-input-rate’. It is found that a considerable modulation of the traditional energy cascading can be introduced with a specific forcing strategy. In spectral space, forcing yields strongly localized deviations from the common Kolmogorov scaling law, directly associated with the explicitly forced scales. In addition, the accumulated effect of forcing induces a significant non-local alteration of the kinetic energy including the spectrum for the large scales. Consequently, a manipulation of turbulent flow can be achieved over an extended range, well beyond the directly forced scales. Compared to flow forced in the large scales only, the energy in broad-band forced turbulence is found to be transferred more effectively to smaller scales. The turbulent mixing of a passive scalar field is also investigated, in order to quantify the physical-space modifications of transport processes in multiscale forced turbulence. The surface-area and wrinkling of level-sets of the scalar field are monitored as measures of the influence of explicit forcing on the local and global mixing efficiency. At small Schmidt numbers, the values of surface-area are mainly governed by the large scale sweeping-effect of the flow while the wrinkling is influenced mainly by the agitation of the smaller scales.
منابع مشابه
Computational Study of Radiative and Convective Heat Transfer in a Cylindrical Combustion Chamber
In this paper, the effect of cold air on the fluid flow inside the cylindrical combustion chamber and its wall temperature distribution have been studied computationally, taking into account the effect of radiative heat transfer from hot gases. The results have been compared with the case that radiative heat transfer was neglected. It is observed that the reattachment length increases when incr...
متن کاملIgnition Analysis in Supersonic Turbulent Mixing Layer
Numerical study of two dimensional supersonic hydrogen-air mixing layer is performed to investigate the effect of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes and one equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is us...
متن کاملTurbulence in the First Stars
We present preliminary results of 2-D simulations of the effects of turbulence in the mixing of Pair Instability Supenovae. We make use of the FLASH code to evolve initial 1-D models of post-bounce PISNe and seed turbulence in form of velocity perturbations. We identify the energetic and spatial scale for the turbulence to have mixing effects on the metal shells inside the star. Under the condi...
متن کاملA Numerical Study on Mixing of Transverse Injection in Supersonic Combustor
A numerical study on mixing of hydrogen injected transversely into a supersonic air stream has been performed by solving Two-Dimensional full Navier-Stokes equations. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. The main objectives of this...
متن کاملThe Effect of Turbulence on Mixing in Prototype Reaction-Diffusion Systems
The effect of turbulence on mixing in prototype reaction-diffusion systems is analyzed here in the special situation where the turbulence is modeled ideally with two separated scales consisting of a large-scale mean flow plus a small-scale spatiotemporal periodic flow. In the limit of fast reaction and slow diffusion, it is rigorously proved that the turbulence does not contribute to the locati...
متن کاملImproving Simulations of the Upper Ocean by Inclusion of Surface Waves in the Mellor-Yamada Turbulence Scheme
[1] The Mellor‐Yamada turbulence closure scheme, used in many ocean circulation models, is often blamed for overly high simulated surface temperature and overly low simulated subsurface temperature in summer due to insufficient vertical mixing. Surface waves can enhance turbulence kinetic energy and mixing of the upper ocean via wave breaking and nonbreaking‐wave‐turbulence interaction. The inf...
متن کامل