Elevated pressure triggers a physiological release of ATP from the retina: Possible role for pannexin hemichannels.
نویسندگان
چکیده
Increased hydrostatic pressure can damage neurons, although the mechanisms linking pressure to neurochemical imbalance or cell injury are not fully established. Throughout the body, mechanical perturbations such as shear stress, cell stretching, or changes in pressure can lead to excessive release of ATP. It is thus possible that increased pressure across neural tissues triggers an elevated release of ATP into extracellular space. As stimulation of the P2X(7) receptor for ATP on retinal ganglion cells leads to elevation of intracellular calcium and excitotoxic death, we asked whether increased levels of extracellular ATP accompanied an elevation in pressure across the retina. The hydrostatic pressure surrounding bovine retinal eyecups was increased and the ATP content of the vitreal compartment adjacent to the retina was determined. A step increase of only 20 mm Hg induced a threefold increase in the vitreal ATP concentration. The ATP levels correlated closely with the degree of pressure increase over 20-100 mm Hg. The increase was transient at lower pressures but sustained at higher pressures. The rise in vitreal ATP was the same regardless of whether nitrogen or air was used to increase pressure, implying changes in oxygen partial pressure did not contribute. Lactate dehydrogenase activity was not affected by pressure, ruling out a substantial contribution from cell lysis. The ATP increase was largely inhibited by either 30 muM 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) or 10 muM carbenoxolone (CBX). While this pharmacological profile is consistent with physiological release of ATP through pannexins hemichannels, a contribution from anion channels, vesicular release or other mechanisms cannot be ruled out. In conclusion, a step elevation in pressure leads to a physiologic increase in the levels of extracellular ATP bathing retinal neurons. This excess extracellular ATP may link increased pressure to the death of ganglion cells in acute glaucoma, and suggests a possible role for ATP in the neuronal damage accompanying increased intracranial pressure.
منابع مشابه
Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells.
The maxi-anion channel plays a classically recognized role in controlling the membrane potential through the chloride conductance. It also has novel functions as a regulated pathway for the release of the anionic signaling molecules ATP and excitatory amino acids from cells subjected to osmotic perturbation, ischemia, or hypoxia. Because hemichannels formed by pannexins and connexins have been ...
متن کاملFunctional significance of the negative-feedback regulation of ATP release via pannexin-1 hemichannels under ischemic stress in astrocytes.
The opening of pannexin-1 (Px1) hemichannels is regulated by the activity of P2X(7) receptors (P2X(7)Rs). At present, however, little is known about how extracellular ATP-sensitive P2X(7)Rs regulates the opening and closure of Px1 hemichannels. Several lines of evidence suggest that P2X(7)Rs are activated under pathological conditions such as ischemia, resulting in the opening of Px1 hemichanne...
متن کاملBoth sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on "A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP".
HOW ATP AND OTHER NUCLEOTIDES are released from intact cells is a fundamental question, given the existence of multiple purinergic receptor signaling cascades operative in most vertebrate tissues (25). It is well-established that neurons and neuroendocrine cells release ATP via classical mechanisms involving Ca -dependent exocytotic release of nucleotides copackaged with other neurotransmitters...
متن کاملRole of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases
In the last decade several groups have determined the key role of hemichannels formed by pannexins or connexins, extracellular ATP and purinergic receptors in physiological and pathological conditions. Our work and the work of others, indicate that the opening of Pannexin-1 hemichannels and activation of purinergic receptors by extracellular ATP is essential for HIV infection, cellular migratio...
متن کاملPannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse.
Engagement of T cells with antigen-presenting cells requires T-cell receptor (TCR) stimulation at the immune synapse. We previously reported that TCR stimulation induces the release of cellular adenosine-5'-triphosphate (ATP) that regulates T-cell activation. Here we tested the roles of pannexin-1 hemichannels, which have been implicated in ATP release, and of various P2X receptors, which serve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 157 2 شماره
صفحات -
تاریخ انتشار 2008