Ternary nanoparticles composed of cationic solid lipid nanoparticles, protamine, and DNA for gene delivery
نویسندگان
چکیده
BACKGROUND The objective of this research was to design an effective gene delivery system composed of cationic solid lipid nanoparticles (SLNs), protamine, and Deoxyribonucleic acid DNA. METHODS Cationic SLNs were prepared using an aqueous solvent diffusion method with octadecylamine as the cationic lipid material. First, protamine was combined with DNA to form binary protamine/DNA nanoparticles, and the ternary nanoparticle gene delivery system was then obtained by combining binary protamine/DNA nanoparticles with cationic SLNs. The size, zeta potential, and ability of the binary and ternary nanoparticles to compact and protect DNA were characterized. The effect of octadecylamine content in SLNs and the SLNS/DNA ratios on transfection efficiency, cellular uptake and cytotoxicity of the ternary nanoparticles were also assessed using HEK293 cells. RESULTS When the weight ratio of protamine to DNA reached 1.5:1, the plasmid DNA could be effectively compacted and protected. The average hydrodynamic diameter of the ternary nanoparticles when combined with protamine increased from 188.50 ± 0.26 nm to 259.33 ± 3.44 nm, and the zeta potential increased from 25.50 ± 3.30 mV to 33.40 ± 2.80 mV when the weight ratio of SLNs to DNA increased from 16/3 to 80/3. The ternary nanoparticles showed high gene transfection efficiency compared with Lipofectamine™ 2000/DNA nanoparticles. Several factors that might affect gene transfection efficiency, such as content and composition of SLNs, post-transfection time, and serum were examined. The ternary nanoparticles composed of SLNs with 15 wt% octadecylamine (50/3 weight ratio of SLNs to DNA) showed the best transfection efficiency (26.13% ± 5.22%) in the presence of serum. It was also found that cellular uptake of the ternary nanoparticles was better than that of the SLN/DNA and binary protamine/DNA nanoparticle systems, and DNA could be transported to the nucleus. CONCLUSION SLNs enhanced entry of binary protamine/DNA nanoparticles into the cell, and protamine protected DNA from enzyme degradation and transported DNA into the nucleus. Compared with Lipofectamine 2000/DNA nanoparticles, these cationic ternary nanoparticles showed relatively durable and stable gene transfection in the presence of serum.
منابع مشابه
Lipid Nanoparticles for Ocular Gene Delivery
Lipids contain hydrocarbons and are the building blocks of cells. Lipids can naturally form themselves into nano-films and nano-structures, micelles, reverse micelles, and liposomes. Micelles or reverse micelles are monolayer structures, whereas liposomes are bilayer structures. Liposomes have been recognized as carriers for drug delivery. Solid lipid nanoparticles and lipoplex (liposome-polyca...
متن کاملEvaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line
Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...
متن کاملLipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery.
The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nano...
متن کاملTernary complex of plasmid DNA with protamine and γ-polyglutamic acid for biocompatible gene delivery system.
The purpose of the present study was to investigate the usefulness of the ternary complex with protamine and γ-polyglutamic acid (γ-PGA), which are biodegradable materials for foods and medical products, as a safe gene delivery vector. We formed cationic binary complexes (plasmid DNA (pDNA)/protamine complexes) with high transfection efficiency. The binary complex showed slight toxicity probabl...
متن کاملInfluence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery
Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,L-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybr...
متن کامل