The Special Neuraminidase Stalk-Motif Responsible for Increased Virulence and Pathogenesis of H5N1 Influenza A Virus
نویسندگان
چکیده
The variation of highly pathogenic avian influenza H5N1 virus results in gradually increased virulence in poultry, and human cases continue to accumulate. The neuraminidase (NA) stalk region of influenza virus varies considerably and may associate with its virulence. The NA stalk region of all N1 subtype influenza A viruses can be divided into six different stalk-motifs, H5N1/2004-like (NA-wt), WSN-like, H5N1/97-like, PR/8-like, H7N1/99-like and H5N1/96-like. The NA-wt is a special NA stalk-motif which was first observed in H5N1 influenza virus in 2000, with a 20-amino acid deletion in the 49(th) to 68(th) positions of the stalk region. Here we show that there is a gradual increase of the special NA stalk-motif in H5N1 isolates from 2000 to 2007, and notably, the special stalk-motif is observed in all 173 H5N1 human isolates from 2004 to 2007. The recombinant H5N1 virus with the special stalk-motif possesses the highest virulence and pathogenicity in chicken and mice, while the recombinant viruses with the other stalk-motifs display attenuated phenotype. This indicates that the special stalk-motif has contributed to the high virulence and pathogenicity of H5N1 isolates since 2000. The gradually increasing emergence of the special NA stalk-motif in H5N1 isolates, especially in human isolates, deserves attention by all.
منابع مشابه
Proteome Response of Chicken Embryo Fibroblast Cells to Recombinant H5N1 Avian Influenza Viruses with Different Neuraminidase Stalk Lengths
The variation on neuraminidase (NA) stalk region of highly pathogenic avian influenza H5N1 virus results in virulence change in animals. In our previous studies, the special NA stalk-motif of H5N1 viruses has been demonstrated to play a significant role in the high virulence and pathogenicity in chickens. However, the molecular mechanisms underlying the pathogenicity of viruses with different N...
متن کاملNeuraminidase gene sequence analysis of avian influenza H9N2 viruses isolated from Iran
Influenza A viruses possesses two virion surface glycoproteins including haemagglutinin (HA) and neuraminidase (NA). The NA plays an important role in viral replication and promotes virus release from infected cells and facilitates virus spread throughout the body. To find out any genomic changes that might be occurred on NA gene of avian influenza circulating viruses, we have genetically analy...
متن کاملThe Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken
Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in gallinaceous poultry world-wide and raised concerns of a novel pandemic. HPAIV develop from low-pathogenic precursors by acquisition of a polybasic HA cleavage site (HACS), the prime virulence determinant. Beside that HACS, other adaptive changes accumulate in those precursors prior to transformation into an HPAIV. He...
متن کاملThe role of influenza virus gene constellation and viral morphology on cytokine induction, pathogenesis, and viral virulence.
1. H5N1 viruses that cause severe disease in humans are potent inducers of proinflammatory cytokines in contrast to seasonal influenza viruses, and this may play a role in the mechanism of H5N1 pathogenesis. 2. H5N1 viruses are predominantly spherical in morphology. Virus morphology does not influence the ability to induce proinflammatory cytokines. 3. The NS1 viral protein may play a role in t...
متن کاملMicrosecond Molecular Dynamics Simulations of Influenza Neuraminidase Suggest a Mechanism for the Increased Virulence of Stalk-Deletion Mutants
Deletions in the stalk of the influenza neuraminidase (NA) surface protein are associated with increased virulence, but the mechanisms responsible for this enhanced virulence are unclear. Here we use microsecond molecular dynamics simulations to explore the effect of stalk deletion on enzymatic activity, contrasting NA proteins from the A/swine/Shandong/N1/2009 strain both with and without a st...
متن کامل