Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions.

نویسندگان

  • Rebecca R Pompano
  • Weishan Liu
  • Wenbin Du
  • Rustem F Ismagilov
چکیده

Spatially defined arrays of droplets differ from bulk emulsions in that droplets in arrays can be indexed on the basis of one or more spatial variables to enable identification, monitoring, and addressability of individual droplets. Spatial indexing is critical in experiments with hundreds to millions of unique compartmentalized microscale processes--for example, in applications such as digital measurements of rare events in a large sample, high-throughput time-lapse studies of the contents of individual droplets, and controlled droplet-droplet interactions. This review describes approaches for spatially organizing and manipulating droplets in one-, two-, and three-dimensional structured arrays, including aspiration, laminar flow, droplet traps, the SlipChip, self-assembly, and optical or electrical fields. This review also presents techniques to analyze droplets in arrays and applications of spatially defined arrays, including time-lapse studies of chemical, enzymatic, and cellular processes, as well as further opportunities in chemical, biological, and engineering sciences, including perturbation/response experiments and personal and point-of-care diagnostics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase and frequency entrainment in locally coupled phase oscillators with repulsive interactions.

Recent experiments in one- and two-dimensional microfluidic arrays of droplets containing Belousov-Zhabotinsky reactants show a rich variety of spatial patterns [M. Toiya et al., J. Phys. Chem. Lett. 1, 1241 (2010)]. The dominant coupling between these droplets is inhibitory. Motivated by this experimental system, we study repulsively coupled Kuramoto oscillators with nearest-neighbor interacti...

متن کامل

Droplet-based Hot Spot Cooling Using Topless Digital Microfluidics on a Printed Circuit Board

Thermal management is a critical issue in integrated circuit (IC) design. With each new IC technology generation, feature sizes decrease, operating speeds increase, and package densities increase, contributing to larger power consumption and elevated die temperatures. Higher temperatures are detrimental to circuit behavior and reliability. Furthermore, hot spots due to spatially non-uniform hea...

متن کامل

Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.

Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. T...

متن کامل

Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds.

In droplet microfluidics, aqueous droplets are typically separated by an oil phase to ensure containment of molecules in individual droplets of nano-to-picoliter volume. An interesting variation of this method involves bringing two phospholipid-coated droplets into contact to form a lipid bilayer in-between the droplets. These interdroplet bilayers, created by manual pipetting of microliter dro...

متن کامل

Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets.

We propose a highly versatile and programmable nanolitre droplet-based platform that accepts an unlimited number of sample plugs from a multi-well plate, performs digitization of these sample plugs into smaller daughter droplets and subsequent synchronization-free, robust injection of multiple reagents into the sample daughter droplets on-demand. This platform combines excellent control of valv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of analytical chemistry

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011