Infill Asymptotics for a Stochastic Process Model with Measurement Error

نویسندگان

  • Huann-Sheng Chen
  • Douglas G. Simpson
  • Zhiliang Ying
  • ZHILIANG YING
چکیده

In spatial modeling the presence of measurement error, or “nugget”, can have a big impact on the sample behavior of the parameter estimates. This article investigates the nugget effect on maximum likelihood estimators for a onedimensional spatial model: Ornstein-Uhlenbeck plus additive white noise. Consistency and asymptotic distributions are obtained under infill asymptotics, in which a compact interval is sampled over a finer and finer mesh as the sample size increases. Spatial infill asymptotics have a very different character than the increasing domain asymptotics familiar from time series analysis. A striking effect of measurement error is that MLE for the Ornstein-Uhlenbeck component of the parameter vector is only fourth-root-n consistent, whereas the MLE for the measurement error variance has the usual root-n rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions

In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Accelerated Asymptotics for Diffusion Model Estimation∗

We propose a semiparametric estimation procedure for scalar homogeneous stochastic differential equations. We specify a parametric class for the underlying diffusion process and identify the parameters of interest by minimizing criteria given by the integrated squared difference between kernel estimates of drift and diffusion function and their parametric counterparts. The nonparametric estimat...

متن کامل

Mixed Domain Asymptotics for a Stochastic Process Model with Time Trend and Measurement Error

Abstract We consider a stochastic process model with time trend and measurement error. We establish consistency and derive the limiting distributions of the maximum likelihood (ML) estimators of the covariance function parameters under a general asymptotic framework, including both the fixed domain and the increasing domain frameworks, even when the time trend model is misspecified or its compl...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003