Auto-ejection of liquid drops from capillary tubes
نویسندگان
چکیده
Wicking flow inside capillary tubes can attain considerable momentum so as to produce a liquid jet at the end of the tube. Auto-ejection refers to the formation of droplets at the tip of such a jet. Experimental observations suggest that a tapering nozzle at the end of the capillary tube is necessary for auto-ejection; it has never been reported for a straight tube. Besides, most experimental realizations require microgravity, although it is possible under normal gravity if the nozzle has a sufficiently sharp contraction. This computational study focuses on two related issues: the critical condition for auto-ejection, and the hydrodynamics of the liquid meniscus as affected by geometric parameters. We adopt a diffuse-interface Cahn–Hilliard model for the moving contact line, and allow the dynamic contact angle to deviate from the static one through wall energy relaxation. From analyzing the dynamics of the meniscus in the straight tube and the nozzle, we establish a critical condition for the onset of auto-ejection based on a Weber number defined at the exit of the nozzle and an effective length that encompasses the geometric features of the tube–nozzle combination. In particular, this shows that capillary ejection is not possible in straight tubes. With steeper contraction in the nozzle, we predict two additional regimes of interfacial rupture: rapid ejection of multiple droplets and air bubble entrapment. The numerical results are in general agreement with available experiments.
منابع مشابه
Experimental study of the shape and motion of flattened drops in a Hele-Shaw Cell
> The motion and shape of a flattened drop and bubble through another continuous liquid phase (conveying phase) are investigated experimentally, using a narrow gap HeleShaw cell. Seven different liquid-liqu...
متن کاملA new ac electrospray mechanism by Maxwell-Wagner polarization and capillary resonance.
We report a new high-frequency (>10 kHz) ac electrospray that is capable of generating micron-sized electroneutral drops. Unlike its dc counterpart, the drops are not ejected continuously from a sharp Taylor cone but intermittently from a resonating meniscus at the orifice. We attribute the resonant frequency to the capillary-inertia vibration time of the meniscus and the drop ejection to the M...
متن کاملInduction and measurement of minute flow rates through nanopipes
A simple technique to simultaneously induce fluid flow through an individual nanopipe and measure the flow rate and the pressure difference across the pipe is described. Two liquid drops of different sizes are positioned at the two ends of the nanopipe. Due to the higher capillary pressure of the smaller drop, flow is driven from the smaller drop to the bigger drop. The instantaneous pressures ...
متن کاملCharacterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs
Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...
متن کاملNanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation.
Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in diff...
متن کامل