Osmotic Tension as a Possible Link between GABAA Receptor Activation and Intracellular Calcium Elevation

نویسندگان

  • Joël Chavas
  • Maria Elisa Forero
  • Thibault Collin
  • Isabel Llano
  • Alain Marty
چکیده

Intracellular calcium concentration rises have been reported following activation of GABA(A) receptors in neonatal preparations and attributed to activation of voltage-dependent Ca(2+) channels. However, we show that, in cerebellar interneurons, GABA(A) agonists induce a somatodendritic Ca(2+) rise that persists at least until postnatal day 20 and is not mediated by depolarization-induced Ca(2+) entry. A local Ca(2+) elevation can likewise be elicited by repetitive stimulation of presynaptic GABAergic afferent fibers. We find that, following GABA(A) receptor activation, bicarbonate-induced Cl(-) entry leads to cell depolarization, Cl(-) accumulation, and osmotic tension. We propose that this tension induces the intracellular Ca(2+) rise as part of a regulatory volume decrease reaction. This mechanism introduces an unexpected link between activation of GABA(A) receptors and intracellular Ca(2+) elevation, which could contribute to activity-driven synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Cl-cotransporters in the Excitation Produced by GABAA Receptors in Juvenile Bovine Adrenal Chromaffin Cells

GABA is the primary inhibitory neurotransmitter in adult mammalian brain. However, in neonatal animals activation of Cl-permeable GABA receptors is excitatory and appears to depend on the expression of a Na-K-2Cl cotransporter (NKCC) that elevates intracellular Cl levels, leading to a depolarized Cl equilibrium potential (ECl). The change from excitation to inhibition appears to involve the exp...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2004