Hurwitz Equivalence in Tuples of Generalized Quaternion Groups and Dihedral Groups

نویسنده

  • Xiang-dong Hou
چکیده

Let Q2m be the generalized quaternion group of order 2 m and DN the dihedral group of order 2N . We classify the orbits in Q2m and D n pm (p prime) under the Hurwitz action. 1 The Hurwitz Action Let G be a group. For a, b ∈ G, let a = bab and a = bab. The Hurwitz action on G (n ≥ 2) is an action of the n-string braid group Bn on G . Recall that Bn is given by the presentation Bn = 〈σ1, . . . , σn−1 | σiσj = σjσi, |i − j| > 2; σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2〉. The action of σi on G n is defined by σi(a1, . . . , an) = (a1, . . . , ai−1, ai+1, a ai+1 i , ai+2, . . . , an), where (a1, . . . , an) ∈ G . Note that σ i (a1, . . . , an) = (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an). An action by σi or σ −1 i on G n is called a Hurwitz move. Two tuples (a1, . . . , an), (b1, . . . , bn) ∈ G n are called (Hurwitz) equivalent, denoted as (a1, . . . , an) ∼ (b1, . . . , bn), if they are in the same Bn-orbit. The (Hurwitz) equivalence class of (a1, . . . , an) ∈ G , i.e., the Bn-orbit of (a1, . . . , an), is denoted by [a1, . . . , an]. If G is a nonabelian group, in general, the Bn-orbits in G n are not known. In [1], Ben-Itzhak and Teicher determined all Bn-orbits in S n m represented by (t1, . . . , tn), where Sm is the symmetric group, each ti is a transposition and t1 · · · tn = 1. It is obvious that if the electronic journal of combinatorics 15 (2008), #R80 1 a1, . . . , an ∈ G generate a finite subgroup, then the Bn-orbit of (a1, . . . , an) in G n is finite. It has been proved that if s1, . . . , sn ∈ GL(R ) are reflections such that the Bn-orbit of (s1, . . . , sn) is finite, then the group generated by s1, . . . , sn is finite; see [2] and [3]. It is natural to ask which types of nonabelian group G allow complete determination of the Bn-orbits in G . In this paper, we show that when G is the generalized quaternion group Q2m or the dihedral group Dpm of order 2p , where p is a prime, the answer to the above question is affirmative. 2 The Generalized Quaternion Group Let m ≥ 2. The generalized quaternion group Q2m of order 2 m is given by the presentation Q2m = 〈α, β | α 2 = 1, α m−2 = β, βαβ = α〉. Each element of Q2m can be uniquely written as α β, where 0 ≤ i < 2 and 0 ≤ j ≤ 1. We have (αβ) β = α l(i−2kj)βj, (2.1) αβ (αβ) = α jk+2ilβl. (2.2) Thus in Qn2m , a Hurwitz move gives one of the following equivalences: (· · · , αβ, αβ, · · · ) ∼ (· · · , αβ, α l(i−2kj)βj, · · · ), (· · · , αβ, αβ, · · · ) ∼ (· · · , α jk+2ilβl, αβ, · · · ). For easier reading, we rewrite the above equivalences, omitting the · · · ’s, with (j, l) = (0, 0), (0, 1), (1, 0) and (1, 1) respectively. (α, α) ∼ (α, α), (2.3) { (α, αβ) ∼ (αβ, α), (α, αβ) ∼ (αβ, α), (2.4) { (αβ, α) ∼ (α, αβ), (αβ, α) ∼ (α, αβ), (2.5) { (αβ, αβ) ∼ (αβ, αβ) = (αβ, αβ), (αβ, αβ) ∼ (αβ, αβ) = (αβ, αβ). (2.6) Lemma 2.1. (i) (α, αβ) ∼ (α, αβ) for all i, j ∈ Z. (ii) (αβ, αβ) ∼ (αβ, αβ) for all i, j, k ∈ Z. (iii) Let τ, ν, e, f ∈ Z such that 0 ≤ ν ≤ m − 2 and e 6≡ f (mod 2). Then for every g ∈ Z, (α νeβ, α νfβ) ∼ (α ν(e+g)β, α ν(f+g)β). the electronic journal of combinatorics 15 (2008), #R80 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The number of Fuzzy subgroups of some non-abelian groups

In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.

متن کامل

Hurwitz Equivalence in Tuples of Dihedral Groups, Dicyclic Groups, and Semidihedral Groups

Let D2N be the dihedral group of order 2N , Dic4M the dicyclic group of order 4M , SD2m the semidihedral group of order 2 m, and M2m the group of order 2 m with presentation M2m = 〈α, β | α 2m−1 = β2 = 1, βαβ−1 = α2 m−2+1〉. We classify the orbits in Dn 2N , Dic n 4M , SD n 2m , and M n 2m under the Hurwitz action.

متن کامل

Non-Abelian Sequenceable Groups Involving ?-Covers

A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...

متن کامل

Hurwitz Equivalence in Dihedral Groups

In this paper we determine the orbits of the braid group Bn action on Gn when G is a dihedral group and for any T ∈ Gn. We prove that the following invariants serve as necessary and sufficient conditions for Hurwitz equivalence. They are: the product of its entries, the subgroup generated by its entries, and the number of times each conjugacy class (in the subgroup generated by its entries) is ...

متن کامل

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008