Combinatorial Benders' Cuts for Mixed-Integer Linear Programming
نویسندگان
چکیده
Mixed-Integer Programs (MIP’s) involving logical implications modelled through big-M coefficients, are notoriously among the hardest to solve. In this paper we propose and analyze computationally an automatic problem reformulation of quite general applicability, aimed at removing the model dependency on the big-M coefficients. Our solution scheme defines a master Integer Linear Problem (ILP) with no continuous variables, which contains combinatorial information on the feasible integer variable combinations that can be “distilled” from the original MIP model. The master solutions are sent to a slave Linear Program (LP), which validates them and possibly returns combinatorial inequalities to be added to the current master ILP. The inequalities are associated to minimal (or irreducible) infeasible subsystems of a certain linear system, and can be separated efficiently in case the master solution is integer. The overall solution mechanism resembles closely the Benders’ one, but the cuts we produce are purely combinatorial and do not depend on the big-M values used in the MIP formulation. This produces an LP relaxation of the master problem which can be considerably tighter than the one associated with original MIP formulation. Computational results on two specific classes of hard-to-solve MIP’s indicate the new method produces a reformulation which can be solved some orders of magnitude faster than the original MIP model.
منابع مشابه
Using Benders Decomposition for Solving Ready Mixed Concrete Dispatching Problem
Large scale dispatching problems are technically characterized as classical NP-hard problems which means that they cannot be solved optimally with existing methods in a polynomial time. Benders decomposition is recommended for solving large scale Mixed Integer Programming (MIP). In this paper we use the Bender Decomposition technique for reformulating the Ready Mixed Concrete Dispatching Proble...
متن کاملAncestral Benders’ Cuts and Multi-term Disjunctions for Mixed-Integer Recourse Decisions in Stochastic Programming
This paper focuses on solving two-stage stochastic mixed integer programs (SMIPs) with general mixed integer decision variables in both stages. We develop a decomposition algorithm in which the first stage approximation is solved using a branch-and-bound tree with nodes inheriting Benders’ cuts that are valid for their ancestor nodes. In addition, we develop two closely related convexification ...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملCombinatorial Benders cuts for assembly line balancing problems with setups
The classical assembly line balancing problem consists of assigning assembly work to workstations. In the presence of setup times that depend on the sequence of tasks assigned to each workstation, the problem becomes more complicated given that two interdependent problems, namely assignment and sequencing, must be solved simultaneously. The hierarchical nature of these two problems also suggest...
متن کاملPareto-Optimality of the Balinski Cut for the Uncapacitated Facility Location Problem
The classical 1962 Benders decomposition scheme is a traditional approach for solving mixed-integer problems such as the uncapacitated facility location problem. Subsequent research has been focused on finding better cutting-plane generation schemes to reduce the solution process time. Pareto-optimal cuts are typically preferred because no other cut can dominate them. However, the Pareto-optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 54 شماره
صفحات -
تاریخ انتشار 2006