Liquid Crystal Functionalization of Electrospun Polymer Fibers

نویسندگان

  • Dae Kyom Kim
  • Minsik Hwang
  • Jan P. F. Lagerwall
چکیده

A recently introduced new branch of applied polymer science is the production of highly functional and responsive fiber mats by means of electrospinning polymers that include liquid crystals. The liquid crystal, which provides the responsiveness, is most often contained inside fibers of core-sheath geometry, produced via coaxial electrospinning, but it may also be inherent to the polymer itself, for example, in case of liquid crystal elastomers. The first experiments served as proof of concept and to elucidate the basic behavior of the liquid crystal in the fibers, and the field is now ripe for more applied research targeting novel devices, in particular in the realm of wearable technology. In this perspective, we provide a bird’s eye view of the current state of the art of liquid crystal electrospinning, as well as of some relevant recent developments in the general electrospinning and liquid crystal research areas, allowing us to sketch a picture of where this young research field and its applicationsmay be heading in the next few years. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 855–867

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers

Covalent surface modification of multiwall carbon nanotubes leads to enhanced nanotube dispersion in the polymer. Despite this, the mechanical properties of electrospun fibers made of polymethylmethacrylate containing surface modified nanotubes generally fall below those of fibers with pristine nanotubes, sometimes below those of pure polymer fibers. We show that covalent functionalization prod...

متن کامل

Electrospun Composite Liquid Crystal Elastomer Fibers

We present a robust method to prepare thin oriented nematic liquid crystalline elastomer-polymer (LCE-polymer) core-sheath fibers. An electrospinning setup is utilized to spin a single solution of photo-crosslinkable low molecular weight reactive mesogens and a support polymer to form the coaxial LCE-polymer fibers, where the support polymer forms the sheath via in situ phase separation as the ...

متن کامل

Fabrication, Characterization and Process Parameters Optimization of Electrospun 58S Bioactive Glass Submicron Fibers

Over the past decades, bioactive glass (BG) has been of a great interest in the bone regeneration field, due to its excellent biocompatibility, bioactivity and osteoconductivity. Herein, fabrication of bioactive glass as one-dimensional fibers by employing an Electrospinning process is reported. The Sol-Gel method was chosen considering the final fibers smoothness and homogeneity. Starting sol ...

متن کامل

Electrospun Fibers of Cyclodextrins and Poly(cyclodextrins).

Cyclodextrins (CDs) can endow electrospun fibers with outstanding performance characteristics that rely on their ability to form inclusion complexes. The inclusion complexes can be blended with electrospinnable polymers or used themselves as main components of electrospun nanofibers. In general, the presence of CDs promotes drug release in aqueous media, but they may also play other roles such ...

متن کامل

Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network

Electro-optical devices that work in a similar fashion as PDLCs (polymer-dispersed liquid crystals), produced from cellulose acetate (CA) electrospun fibers deposited onto indium tin oxide coated glass and a nematic liquid crystal (E7), were studied. CA and the CA/liquid crystal composite were characterized by multiple investigation techniques, such as polarized optical microscopy, dielectric s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013