Parsimonious Random Vector Functional Link Network for Data Streams

نویسندگان

  • Mahardhika Pratama
  • Plamen P. Angelov
  • Edwin Lughofer
  • Meng Joo Er
چکیده

the theory of random vector functional link network (RVFLN) has provided a breakthrough in the design of neural networks (NNs) since it conveys solid theoretical justification of randomized learning. Existing works in RVFLN are hardly scalable for data stream analytics because they are inherent to the issue of complexity as a result of the absence of structural learning scenarios. A novel class of RVLFN, namely parsimonious random vector functional link network (pRVFLN), is proposed in this paper. pRVFLN adopts a fully flexible and adaptive working principle where its network structure can be configured from scratch and automatically generated in accordance with nonlinearity and time-varying property of system being modelled. pRVFLN is equipped with complexity reduction scenarios where inconsequential hidden nodes can be pruned and input features can be dynamically selected. pRVFLN puts into perspective an online active learning mechanism which expedites the training process and relieves operator’s labelling efforts. In addition, pRVFLN introduces a non-parametric type of hidden node, developed using an interval-valued data cloud. The hidden node completely reflects the real data distribution and is not constrained by a specific shape of the cluster. All learning procedures of pRVFLN follow a strictly single-pass learning mode, which is applicable for online time-critical applications. The advantage of pRVFLN was verified through numerous simulations with real-world data streams. It was benchmarked with recently published algorithms where it demonstrated comparable and even higher predictive accuracies while imposing the lowest complexities. Furthermore, the robustness of pRVFLN was investigated and a new conclusion is made to the scope of random parameters where it plays vital role to the success of randomized learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Multi-Class Classification of Random Forest using Random Vector Functional Neural Network and Oblique Decision Surfaces

Both neural networks and decision trees are popular machine learning methods and are widely used to solve problems from diverse domains. These two classifiers are commonly used base classifiers in an ensemble framework. In this paper, we first present a new variant of oblique decision tree based on a linear classifier, then construct an ensemble classifier based on the fusion of a fast neural n...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Predicting the cause of kidney stones in patients using random forest, support vector machine and neural network

Background: Today, with the advancement of technology in various fields, the importance of recording data in the field of health is increasing so much that for many diseases around the world, including kidney disease, registration systems have been set up. This is happening in our country and in the future, the number of these systems will increase. The medical data set contains valuable inform...

متن کامل

A New Approach to Link Prediction in Gene Regulatory Networks

Link prediction is an important data mining problem that has many applications in different domains such as social network analysis and computational biology. For example, biologists model gene regulatory networks (GRNs) as directed graphs where nodes are genes and links show regulatory relationships between the genes. By predicting links in GRNs, biologists can gain a better understanding of t...

متن کامل

Probit-Based Traffic Assignment: A Comparative Study between Link-Based Simulation Algorithm and Path-Based Assignment and Generalization to Random-Coefficient Approach

Probabilistic approach of traffic assignment has been primarily developed to provide a more realistic and flexible theoretical framework to represent traveler’s route choice behavior in a transportation network. The problem of path overlapping in network modelling has been one of the main issues to be tackled. Due to its flexible covariance structure, probit model can adequately address the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 430  شماره 

صفحات  -

تاریخ انتشار 2018