Three Lectures On Automorphic Loops

نویسنده

  • PETR VOJTĚCHOVSKÝ
چکیده

These notes accompany a series of three lectures on automorphic loops to be delivered by the author at Workshops Loops ’15 (Ohrid, Macedonia, 2015). Automorphic loops are loops in which all inner mappings are automorphisms. The first paper on automorphic loops appeared in 1956 and there has been a surge of interest in the topic since 2010. The purpose of these notes is to introduce the methods used in the study of automorphic loops to a wider audience of researchers working in nonassociative mathematics. In the first lecture we establish basic properties of automorphic loops (flexibility, powerassociativity and the antiautomorphic inverse property) and discuss relations of automorphic loops to Moufang loops. In the second lecture we expand on ideas of Glauberman and investigate the associated operation (x−1\(y2x))1/2 and similar concepts, using a more modern approach of twisted subgroups. We establish many structural results for commutative and general automorphic loops, including the Odd Order Theorem. In the last lecture we look at enumeration and constructions of automorphic loops. We show that there are no nonassociative simple automorphic loops of order less than 4096, we study commutative automorphic loops of order pq and p, and introduce two general constructions of automorphic loops. The material is newly organized and sometimes new, shorter proofs are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lectures on automorphic L-functions

PREFACE This article follows the format of five lectures that we gave on automorphic Lfunctions. The lectures were intended to be a brief introduction for number theorists to some of the main ideas in the subject. Three of the lectures concerned the general properties of automorphic L-functions, with particular reference to questions of spectral decomposition. We have grouped these together as ...

متن کامل

The Structure of Automorphic Loops

Automorphic loops are loops in which all inner mappings are automorphisms. This variety of loops includes, for instance, groups and commutative Moufang loops. We study uniquely 2-divisible automorphic loops, particularly automorphic loops of odd order, from the point of view of the associated Bruck loops (motivated by Glauberman’s work on uniquely 2-divisible Moufang loops) and the associated L...

متن کامل

The Structure of Free Automorphic Moufang Loops

We describe the structure of a free loop of rank n in the variety of automorphic Moufang loops as a subdirect product of a free group and a free commutative Moufang loop, both of rank n. In particular, the variety of automorphic Moufang loops is the join of the variety of groups and the variety of commutative Moufang loops.

متن کامل

Nilpotency in Automorphic Loops of Prime Power Order

A loop is automorphic if its inner mappings are automorphisms. Using socalled associated operations, we show that every commutative automorphic loop of odd prime power order is centrally nilpotent. Starting with suitable elements of an anisotropic plane in the vector space of 2 × 2 matrices over the field of prime order p, we construct a family of automorphic loops of order p with trivial center.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015