From random mutagenesis to systems biology in metabolic engineering of mammalian cells Pharmaceutical

نویسندگان

  • Hooman Hefzi
  • Nathan E Lewis
چکیده

Metabolic engineering is rapidly developing, with a continuous stream of technological developments being employed to expand the portfolio of molecules produced in cell factories. For chemical production (e.g., amino acids, biofuels, among others), metabolic engineering has progressed through three phases [1]. Initially, biological products were obtained through random mutagenesis of production strains and large screening efforts. Improved microbial strains could be isolated, but mechanisms underlying the desired phenotype were often poorly understood [2]. Diverse molecular biology techniques facilitated the second phase, in which simple, intuitive modifications were made. The third phase now employs systems biology techniques to understand the effect of modifications on all other metabolic pathways and on cell physiology. Thus, we have entered an era in which metabolic engineering aims to improve microbial strains in a reproducible fashion, using complex designs based on detailed biochemical knowledge and computational model simulations. Here, we highlight the historical progression toward using systems biology in microbial metabolic engineering and compare this to the current status of mammalian production cell line development. Finally, we discuss the unique challenges in engineering mammalian cell lines for biotherapeutic production and outline how systems biology can facilitate metabolic engineering efforts for these platforms. The systems biology approach to metabolic engineering has been enabled by three primary advancements: whole-genome sequencing, gene editing tools and genome-scale models of cellular metabolism. The completion of the Escherichia coli K-12 genome sequencing effort in 1997 [3] provided a comprehensive parts list for targeted metabolic engineering and expanded the scope of our understanding of the machinery within this microbe. The further development of efficient genetic modification systems, such as the lambda Red recombination system [4], enabled the deployment of targeted metabolic engineering designs, such as the removal of competing pathways that divert flux away from the formation of a desired product. Predictions of the systemic effects of genetic modifications were enabled when the information in the sequenced genome was harnessed for the development of genome-scale models of metabolism [5]. These models contain all known biochemical reactions in a cell, thus allowing one to predict the overall impact of modifications on phenotypic traits such as growth rate and small molecule secretion. Systems biology approaches are now important tools in microbial metabolic engineering. Yim et al. genetically modified E. coli to produce 1,4-butanediol (BDO) by introducing heterologous genes to allow Hooman Hefzi Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systems metabolic engineering, industrial biotechnology and microbial cell factories

Cell factories have been largely exploited for the controlled production of substances of interest for food, pharma and biotech industries. Although human-controlled microbial production and transformation are much older, the cell factory concept was fully established in the 80’s through the intensive public and private investment. Strongly empowered by the then nascent recombinant DNA technolo...

متن کامل

Transient expression of virus-like particles in plants: a promising platform for rapid vaccine production

Transient expression is an efficient and fast system to express recombinant proteins which has been used in different eukaryotic hosts such as mammalian and plant cells. Several applications of this system have so far been used which expression of proteins of interest is one of them. Recently, plants have attracted attention for being used as hosts for the production of recombinant pharmaceutic...

متن کامل

Genome-wide genetic screening with chemically-mutagenized haploid embryonic stem cells

In model organisms, classical genetic screening via random mutagenesis provides key insights into the molecular bases of genetic interactions, helping to define synthetic lethality, synthetic viability and drug-resistance mechanisms. The limited genetic tractability of diploid mammalian cells, however, precludes this approach. Here, we demonstrate the feasibility of classical genetic screening ...

متن کامل

In vitro elaboration Mutagenesis and cloning of the PA gene in Bacillus subtilis

Background: The immune antigen of Bacillus anthracis is a protein that can attach to the surface receptor of all human cells. At the surface of cancer cells, there is a receptor that activates the uPA (Urokinase plasminogen) that do not exist in normal human cells. Objectives: The aim of this study was changing the location of the attachment of the PA gene by a dir...

متن کامل

In vitro elaboration Mutagenesis and cloning of the PA gene in Bacillus subtilis

Background: The immune antigen of Bacillus anthracis is a protein that can attach to the surface receptor of all human cells. At the surface of cancer cells, there is a receptor that activates the uPA (Urokinase plasminogen) that do not exist in normal human cells. Objectives: The aim of this study was changing the location of the attachment of the PA gene by a dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014