Toolbox for Emotional feAture extraction from Physiological signals (TEAP)

نویسندگان

  • Mohammad Soleymani
  • Frank Villaro-Dixon
  • Thierry Pun
  • Guillaume Chanel
چکیده

Physiological response is an important component of an emotional episode. In this paper, we introduce a Toolbox for Emotional feAture Extraction from Physiological signals (TEAP). This open source toolbox can preprocess and calculate emotionally relevant features from multiple physiological signals, namely, electroencephalogram (EEG), galvanic skin response (GSR), electromyogram (EMG), skin temperature, respiration pattern, and blood volume pulse. The features from this toolbox are tested on two publicly available databases, i.e., MAHNOB-HCI and DEAP. We demonstrate that we achieve similar performance to the original work with the features from this toolbox. The toolbox is implemented in MATLAB and is also compatible with Octave. We hope this toolbox to be further developed and accelerate research in affective physiological signal analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

Proposed new signal for real-time stress monitoring: Combination of physiological measures

Human stress is a physiological tension that appears when a person responds to mental, emotional, or physical chal-lenges. Detecting human stress and developing methods to manage it, has become an important issue nowadays. Au-tomatic stress detection through physiological signals may be a useful method for solving this problem. In most of the earlier studies, long-term time window was considere...

متن کامل

طبقه بندی احساس افراد با استفاده از سیگنال های مغزی و محیطی

Abstract Emotions play a powerful and significant role in human beings everyday life. They motivate us, impact our beliefs and decision making and would affect some cognitive processes like creativity, attention, and memory. Nowadays the use of emotion in computers is an increasingly in vogue field. In many ways emotions are one of the last and least explored frontiers of intuitive human-comput...

متن کامل

Fusion Framework for Emotional Electrocardiogram and Galvanic Skin Response Recognition: Applying Wavelet Transform

Introduction To extract and combine information from different modalities, fusion techniques are commonly applied to promote system performance. In this study, we aimed to examine the effectiveness of fusion techniques in emotion recognition. Materials and Methods Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy female students (mean age: 22.73±1.68 years) were collected ...

متن کامل

Speech Based Emotional Feature Extraction

With the increase in the computing capabilities of the microprocessors it has now become possible to do real time computations on speech signals and images, so automatic emotion recognition through speech signals has become an important area of research. In this paper we have discussed the methods of extracting emotional features from a regular speech signals. Index Terms —Emotional feature; fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Front. ICT

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017