Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.
نویسندگان
چکیده
Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.
منابع مشابه
Enhanced luminescence of Er+3-doped Zinc-Lead-Phosphate Glass embedded SnO2 nanoparticles
Introduction of the nanoparticles in the bulk glass received a large interest due to their versatile application. The composition of Er+3-doped Zinc-Lead-Phosphate glass samples are prepared by melt-quenching technique. The structural and optical properties of phosphate glass have been examined by x-ray diffraction, fie...
متن کاملVisible photoluminescence from porous a-Si:H and porous a-Si:C:H thin films
We report on the influence of doping, temperature, porosity, band gap, and oxidation on the photoluminescence ~PL! properties of anodically etched porous a-Si:H and a-Si:C:H thin films. Only boron-doped, p-type a-Si:H samples exhibited visible photoluminescence. Two broad PL peaks at ;1.6 and ;2.2 eV are apparent in room temperature PL spectra. The intensity of the 2.2 eV peak as well as the na...
متن کاملStructural and optical properties of n- type porous silicon– effect of etching time
Porous silicon layers have been prepared from n-type silicon wafers of (100) orientation. SEM, FTIR and PL have been used to characterize the morphological and optical properties of porous silicon. The influence of varying etching time in the anodizing solution, on structural and optical properties of porous silicon has been investigated. It is observed that pore size increases with etching tim...
متن کاملInvestigation of the effect of amino-alcohol stabilizers on crystal structure, band gap and blue luminescence of Cu-doped ZnO nanoparticles prepared by sol-gel method
In this research, Zn0.97Cu0.03O nanoparticles are prepared by sol-gel method using various stabilizers (Mono, Di, and Tri-ethanolamine). The effect of stabilizers on the structural, morphological and optical properties of the nanoparticles were investigated. Study of X-ray diffraction pattern shows the hexagonal wurtzite structure of samples. The crystallite size, strain, stress, and deformatio...
متن کاملPiezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2.
Continuous tuning of material properties is highly desirable for a wide range of applications, with strain engineering being an interesting way of achieving it. The tuning range, however, is limited in conventional bulk materials that can suffer from plasticity and low fracture limit due to the presence of defects and dislocations. Atomically thin membranes such as MoS2 on the other hand exhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 46 شماره
صفحات -
تاریخ انتشار 2014