A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells
نویسندگان
چکیده
We show that a cage-shaped F-actin network is essential for maintaining a tight spatial organization of Cav1.3 Ca(2+) channels at the synaptic ribbons of auditory inner hair cells. This F-actin network is also found to provide mechanosensitivity to the Cav1.3 channels when varying intracellular hydrostatic pressure. Furthermore, this F-actin mesh network attached to the synaptic ribbons directly influences the efficiency of otoferlin-dependent exocytosis and its sensitivity to intracellular hydrostatic pressure, independently of its action on the Cav1.3 channels. We propose a new mechanistic model for vesicle exocytosis in auditory hair cells where the rate of vesicle recruitment to the ribbons is directly controlled by a synaptic F-actin network and changes in intracellular hydrostatic pressure.
منابع مشابه
Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse
The auditory inner hair cell (IHC) ribbon synapse operates with an exceptional temporal precision and maintains a high level of neurotransmitter release. However, the molecular mechanisms underlying IHC synaptic exocytosis are largely unknown. We studied otoferlin, a predicted C2-domain transmembrane protein, which is defective in a recessive form of human deafness. We show that otoferlin expre...
متن کاملOtoferlin: a multi-C2 domain protein essential for hearing.
Sound is encoded at synapses between cochlear inner hair cells and the auditory nerve. These synapses are anatomically and functionally specialized to transmit acoustic information with high fidelity over a lifetime. The molecular mechanisms of hair-cell transmitter release have recently attracted substantial interest. Here we review progress toward understanding otoferlin, a multi-C2 domain pr...
متن کاملUnconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells.
Ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle replenishment to indefatigably encode sound. In neurons, neuroendocrine and immune cells, vesicle replenishment depends on proteins of the mammalian uncoordinated 13 (Munc13, also known as Unc13) and Ca(2+)-dependent activator proteins for secretion (CAPS) families, which prime vesicles for exocytosis. Here, we tested ...
متن کاملTryptophan-rich basic protein (WRB) mediates insertion of the tail-anchored protein otoferlin and is required for hair cell exocytosis and hearing.
The transmembrane recognition complex (TRC40) pathway mediates the insertion of tail-anchored (TA) proteins into membranes. Here, we demonstrate that otoferlin, a TA protein essential for hair cell exocytosis, is inserted into the endoplasmic reticulum (ER) via the TRC40 pathway. We mutated the TRC40 receptor tryptophan-rich basic protein (Wrb) in hair cells of zebrafish and mice and studied th...
متن کاملOtoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (OtofAla515,Ala517/Ala515,Ala517) with lower ...
متن کامل