Intercellular Ca2+ signaling in alveolar epithelial cells through gap junctions and by extracellular ATP.
نویسندگان
چکیده
Inter- and extracellular-mediated changes in intracellular Ca2+ concentration ([Ca2+]i) can ensure coordinated tissue function in the lung. Cultured rat alveolar epithelial cells (AECs) have been shown to respond to secretagogues with increases in [Ca2+]i and have been shown to be gap junctionally coupled. However, communication of [Ca2+]i changes in AECs is not well defined. Monolayers of AECs were mechanically perturbed and monitored for [Ca2+]i changes. Perturbation of AECs was administered by a glass probe to either mechanically stimulate or mechanically wound individual cells. Both approaches induced a change in [Ca2+]i in the stimulated cell that was propagated to neighboring cells (Ca2+ waves). A connexin mimetic peptide shown to uncouple gap junctions eliminated Ca2+ waves in mechanically stimulated cells but had no effect on mechanically wounded cells. In contrast, apyrase, an enzyme that effectively removes ATP from the extracellular milieu, had no effect on mechanically stimulated cells but severely restricted mechanically wounded Ca2+ wave propagation. We conclude that AECs have the ability to communicate coordinated Ca2+ changes using both gap junctions and extracellular ATP.
منابع مشابه
Intercellular calcium signaling induced by extracellular adenosine 5'-triphosphate and mechanical stimulation in airway epithelial cells.
Airway epithelial cells in culture respond to extracellular adenosine 5'-triphosphate (ATP) by increasing their intracellular Ca2+ concentration ([Ca2+]i). The effective concentration of ATP that elicited a Ca2+ response equal to 50% of the maximal response (EC50) was 0.5 microM. Release of ATP from a pipette to form a local gradient of ATP increased [Ca2+]i of individual cells in a sequential ...
متن کاملConnexin mimetic peptides reversibly inhibit Ca(2+) signaling through gap junctions in airway cells.
The effect of peptides with sequences derived from connexins, the constituent proteins of gap junctions, on mechanically stimulated intercellular Ca(2+) signaling in tracheal airway epithelial cells was studied. Three peptides with sequences corresponding to connexin extracellular loop regions reversibly restricted propagation of Ca(2+) waves to neighboring cells. Recovery of communication bega...
متن کاملIntercellular calcium signaling via gap junction in connexin-43-transfected cells.
In excitable cells, intracellular Ca2+ is released via the ryanodine receptor from the intracellular Ca2+ storing structure, the sarcoplasmic reticulum. To determine whether this released Ca2+ propagates through gap junctions to neighboring cells and thereby constitutes a long range signaling network, we developed a cell system in which cells expressing both connexin-43 and ryanodine receptor a...
متن کاملEarly responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication.
Tendon and other connective tissue cells are subjected to diverse mechanical loads during daily activities. Thus, fluid flow, strain, shear and combinations of these stimuli activate mechanotransduction pathways that modulate tissue maintenance, repair and pathology. Early mechanotransduction events include calcium (Ca2+) signaling and intercellular communication. These responses are mediated t...
متن کاملSharing signals: connecting lung epithelial cells with gap junction channels.
Gap junction channels enable the direct flow of signaling molecules and metabolites between cells. Alveolar epithelial cells show great variability in the expression of gap junction proteins (connexins) as a function of cell phenotype and cell state. Differential connexin expression and control by alveolar epithelial cells have the potential to enable these cells to regulate the extent of inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 280 2 شماره
صفحات -
تاریخ انتشار 2001