Prenatal Treatment of Mosaic Mice (Atp7a mo-ms) Mouse Model for Menkes Disease, with Copper Combined by Dimethyldithiocarbamate (DMDTC)

نویسندگان

  • Małgorzata Lenartowicz
  • Wojciech Krzeptowski
  • Paweł Koteja
  • Katarzyna Chrząścik
  • Lisbeth Birk Møller
چکیده

Menkes disease is a fatal neurodegenerative disorder in infants caused by mutations in the gene ATP7A which encodes a copper (Cu) transporter. Defects in ATP7A lead to accumulated copper in the small intestine and kidneys and to copper deficiencies in the brain and the liver. The copper level in the kidney in postnatal copper-treated Menkes patients may reach toxic levels. The mouse model, mosaic Atp7a (mo-ms) recapitulates the Menkes phenotype and die about 15.75±1.5 days of age. In the present study we found that prenatal treatment of mosaic murine fetuses throughout gestation days 7, 11, 15 and 18 with a combination of CuCl(2) (50 mg/kg) and dimethyldithiocarbamate (DMDTC) (280 mg/kg) leads to an increase in survival to about 76±25.3 days, whereas treatment with CuCl(2) alone (50 mg/kg) only leads to survival for about 21 days ±5 days. These copper-DMDTC treated mutants showed an improved locomotor activity performance and a gain in body mass. In contrast to treatment with CuCl(2) alone, a significant increase in the amount of copper was observed in the brain after prenatal copper-DMDTC treatment as well as a decrease in the amount of accumulated copper in the kidney, both leading towards a normalization of the copper level. Although copper-DMDTC prenatal treatment only leads to a small increase in the sub-normal copper concentration in the liver and to an increase of copper in the already overloaded small intestine, the combined results suggest that prenatal copper-DMDTC treatment also should be considered for humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutation in the CPC motif-containing 6th transmembrane domain affects intracellular localization, trafficking and copper transport efficiency of ATP7A protein in mosaic mutant mice--an animal model of Menkes disease.

Copper is an essential micronutrient for all living organisms. ATP7A protein is a copper-transporting ATPase which plays a vital role in the maintenance of cellular copper homeostasis in mammals. This protein is retained within the trans-Golgi network, but after binding copper it can be translocated to the cell membrane to participate in the efflux of excess Cu. Mutation of the ATP7A gene in hu...

متن کامل

Molecular basis of the brindled mouse mutant (Mo(br)): a murine model of Menkes disease.

The brindled mouse mutant (Mo(br)) is the closest animal model of the human genetic copper deficiency, Menkes disease, which is presumed to be due to a mutation at the X-linked mottled locus (Mo). The mutant mice are hypopigmented and die at around 15 days after birth, but can be saved by treatment with copper before the 10th postnatal day. Menkes disease has been shown to be due to mutations o...

متن کامل

Intracellular localization and loss of copper responsiveness of Mnk, the murine homologue of the Menkes protein, in cells from blotchy (Mo blo) and brindled (Mo br) mouse mutants.

Menkes disease is an X-linked copper deficiency disorder that results from mutations in the ATP7A ( MNK ) gene. A wide range of disease-causing mutations within ATP7A have been described, which lead to a diversity of phenotypes exhibited by Menkes patients. The mottled locus ( Mo, Atp7a, Mnk ) represents the murine homologue of the ATP7A gene, and the mottled mutants exhibit a diversity of phen...

متن کامل

Autonomous requirements of the Menkes disease protein in the nervous system.

Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental reta...

متن کامل

Haemolysis and Perturbations in the Systemic Iron Metabolism of Suckling, Copper-Deficient Mosaic Mutant Mice – An Animal Model of Menkes Disease

The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012