Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture.
نویسندگان
چکیده
We report a new type of plasmonic nanoscale ridge aperture and its fabrication process which is based on layer-by-layer planar lithography. This new fabrication method allows us to create desired nanoscale features of a plasmonic ridge waveguide nanoscale aperture, which helps to confine a near-field spot to sub-wavelength dimensions. Numerical simulations using Finite Element Method (FEM) are performed to calculate the near-field distribution around the exit of the aperture. Measurements using scattering near-field scanning optical microscopy (s-NSOM) confirm the design and demonstrate that the aperture is capable of producing focused spots in the ridge gap at the exit of the aperture. The planar lithography process is a step toward mass production of such plasmonic structures for applications including heat-assisted magnetic recording (HAMR).
منابع مشابه
Nanolithography using high transmission nanoscale ridge aperture probe
Nanoscale ridge apertures provide a highly confined radiation spot with a high transmission efficiency when used in the near field approach. The radiation confinement and enhancement is due to the electric–magnetic field concentrated in the gap between the ridges. This paper reports the experimental demonstration of radiation enhancement using such antenna apertures and lithography of nanometer...
متن کاملAn Ultralow Cross-Polarization Slot Array Antenna in Narrow Wall of Angled Ridge Waveguide
A low cross-polarization slot array antenna in the narrow wall of ridge waveguide is presented. A non-angled slot which is created in the narrow wall of the ridge waveguide is considered to be used as radiating resonant slot. The normalized resistance and normalized reactance curves are presented for design purposes. A six element slot array waveguide antenna with ridges on its narrow wall is t...
متن کاملConcentrating light into nanometer domain using nanoscale ridge apertures and its application in laser-based nanomanufacturing
In this work, we investigate light concentration in nanoscale ridge apertures and its applications in nanomanufacturing. Optical transmission of ridge apertures in a metal film is optimized by numerical design using the finite-difference time-domain (FDTD) method. We show that ridge apertures provide an optical transmission enhancement of several orders of magnitude higher than regularly shaped...
متن کاملObtaining Subwavelength Optical Spots Using Nanoscale Ridge Apertures
Concentrating light into a nanometer domain is needed for optically based materials processing at the nanoscale. Conventional nanometer-sized apertures suffer from low light transmission, therefore poor near-field radiation. It has been suggested that ridge apertures in various shapes can provide enhanced transmission while maintaining the subwavelength optical resolution. In this work, the nea...
متن کاملNear-Field Fluorescence Cross-Correlation Spectroscopy on Planar Membranes
The organization and dynamics of plasma membrane components at the nanometer scale are essential for biological functions such as transmembrane signaling and endocytosis. Planarized nanoscale apertures in a metallic film are demonstrated as a means of confining the excitation light for multicolor fluorescence spectroscopy to a 55 ± 10 nm beam waist. This technique provides simultaneous two-colo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 24 23 شماره
صفحات -
تاریخ انتشار 2016