A nonconvex separation property and some applications

نویسندگان

  • Alejandro Jofré
  • Jorge Rivera Cayupi
چکیده

In this paper we proved a nonconvex separation property for general sets which coincides with the Hahn-Banach separation theorem when sets are convexes. Properties derived from the main result are used to compute the subgradient set to the distance function in special cases and they are also applied to extending the Second Welfare Theorem in economics and proving the existence of singular multipliers in Optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nonconvex separation property in Banach spaces

We establish, in innnite dimensional Banach space, a nonconvex separation property for general closed sets that is an extension of Hahn-Banach separation theorem. We provide some consequences in optimization, in particular the existence of singular multipliers and show the relation of our principle with the extremal principle of Mordukhovich.

متن کامل

Unified approach to some geometric results in variational analysis

Based on a study of a minimization problem, we present the following results applicable to possibly nonconvex sets in a Banach space: an approximate projection result, an extended extremal principle, a nonconvex separation theorem, a generalized Bishop-Phelps theorem and a separable point result. The classical result of Dieudonné (on separation of two convex sets in a finite dimensional space) ...

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization

In many modern machine learning applications, structures of underlying mathematical models often yield nonconvex optimization problems. Due to the intractability of nonconvexity, there is a rising need to develop efficient methods for solving general nonconvex problems with certain performance guarantee. In this work, we investigate the accelerated proximal gradient method for nonconvex program...

متن کامل

Some Converses of the Strong Separation Theorem

A convex subset B of a real locally convex space X is said to have the separation property if it can be separated from any closed convex subset A of X, which is disjoint from B, by a closed hyperplane. The strong separation theorem says that if B is weakly compact then it has the separation property. In this paper, we present several versions for the converse and discuss some applications. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2006