Autocatalytic processing of the ATP-dependent PIM1 protease: crucial function of a pro-region for sorting to mitochondria.
نویسندگان
چکیده
The biogenesis of the ATP-dependent PIM1 protease of mitochondria was studied by mutational analysis. The ATPase and proteolytic activities of PIM1 were shown to be essential for mitochondrial function. A proteolytically inactive mutant form of PIM1 protease accumulated as a pro-form in mitochondria, revealing a two-step processing of PIM1: the matrix targeting signal is removed by the mitochondrial processing peptidase and then a pro-region of 61 amino acids is cleaved off in an autocatalytic reaction. This latter process depended on the ATP-dependent assembly of PIM1 protease subunits and can occur by an intermolecular and, most probably, also an intramolecular pathway. The respiratory competence of cells harboring mutant PIM1 protease lacking the pro-region was strongly impaired. Subcellular fractionation revealed a cytosolic localization of mutant PIM1 protease. This demonstrates the requirement for the propeptide for efficient sorting of PIM1 protease to mitochondria.
منابع مشابه
Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1.
ATP-dependent proteases are currently emerging as key regulators of mitochondrial functions. Among these proteolytic systems, Pim1, a Lon-like serine protease in Saccharomyces cerevisiae, is involved in the control of selective protein turnover in the mitochondrial matrix. In the absence of Pim1, yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to l...
متن کاملThe ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria.
The ATP-dependent PIM1 protease, a Lon-like protease localized in the mitochondrial matrix, is required for mitochondrial genome integrity in yeast. Cells lacking PIM1 accumulate lesions in the mitochondrial DNA (mtDNA) and therefore lose respiratory competence. The identification of a multicopy suppressor, which stabilizes mtDNA in the absence of PIM1, enabled us to characterize novel function...
متن کاملMolecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria.
ATP dependent proteolytic degradation of misfolded proteins in the mitochondrial matrix is mediated by the PIM1 protease and depends on the molecular chaperone proteins mt-hsp70 and Mdj1p. Chaperone function is essential to maintain misfolded proteins in a soluble state, a prerequisite for their degradation by PIM1 protease. In the absence of functional mt-hsp70 or Mdj1p misfolded proteins eith...
متن کاملO-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte
Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...
متن کاملalpha-lytic protease precursor: characterization of a structured folding intermediate.
The bacterial alpha-lytic protease (alphaLP) is synthesized as a precursor containing a large N-terminal pro region (Pro) transiently required for correct folding of the protease [Silen, J. L., and Agard, D. A. (1989) Nature 341, 462-464]. Upon folding, the precursor is autocatalyticly cleaved to yield a tight-binding inhibitory complex of the pro region and the fully folded protease (Pro/alpha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 16 24 شماره
صفحات -
تاریخ انتشار 1997