Bend Minimization of Ortho-Radial Graph Drawings
نویسندگان
چکیده
We study orthogonal drawings of 4-planar graphs on cylinders—so called ortho-radial drawings. Equivalently these can be regarded as drawings on an ortho-radial grid formed by concentric circles and rays from the center of these circles but excluding the center itself. Ortho-radial drawings form a proper extension of orthogonal drawings in the plane. We present ortho-radial representations as a means to describe the shape of these drawings without fixing the actual coordinates and edge lengths. Additionally, we give conditions on the representation that are both necessary and sufficient for an ortho-radial drawing to exist. Being able to describe the shape by ortho-radial representations is a crucial step in order to apply Tamassia’s Topology-Shape-Metrics framework to ortho-radial graph drawing. Furthermore, we show that it is NP-complete to determine whether a given 4-planar graph without a fixed embedding admits an ortho-radial drawing without edge bends. But when one restricts oneself to cactus graphs, it is possible to find bend-minimal drawings in linear time. Deutsche Zusammenfassung In dieser Arbeit werden orthogonale Zeichnungen von 4-planaren Graphen auf Zylindern – so genannte ortho-radiale Zeichnungen – betrachtet. Diese können alternativ auch als Zeichnungen auf ein radiales Gitter angesehen werden. Ein solches Gitter besteht aus konzentrischen Kreisen und Strahlen, die vom gemeinsamen Zentrum der Kreise ausgehen, ohne dabei jedoch das Zentrum selbst zu enthalten. Ortho-radiales Zeichnen ist eine echte Erweiterung des orthogonalen Graphenzeichnens in der Ebene. Um die Form der Zeichnung zu beschreiben, ohne jedoch Koordinaten oder Kantenlängen festzulegen, werden ortho-radiale Beschreibungen vorgestellt. Für diese werden außerdem Bedingungen aufgezeigt, welche sowohl notwendig als auch hinreichend für die Existenz einer Zeichnung sind. Die Fähigkeit, die Form einer Zeichnung zu beschreiben, ist ein entscheidender Schritt zur Anwendung von Tamassias TopologyShape-Metrics-Framework auf ortho-radiales Graphenzeichnen. Zusätzlich wird gezeigt, dass es NP-vollständig ist zu entscheiden, ob ein gegebener 4-planarer Graph ohne feste Einbettung eine ortho-radiale Zeichnung ohne Kantenknicke besitzt. Beschränkt man sich jedoch auf Kaktusgraphen, so kann in Linearzeit eine knickminimale Zeichnung bestimmt werden.
منابع مشابه
Ortho-radial drawings of graphs
By an ortho-radial drawing of a graph we mean a planar drawing on concentric circles such that each edge is an alternating sequence of circular and radial segments, where a circular segment is a part of a circle and a radial segment is a part of a half-line starting at the center of the circles. Ortho-radial drawings are topologically an extension of orthogonal drawings to drawings on a cylinde...
متن کاملTowards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings
Ortho-Radial drawings are a generalization of orthogonal drawings to grids that are formed by concentric circles and straight-line spokes emanating from the circles’ center. Such drawings have applications in schematic graph layouts, e.g., for metro maps and destination maps. A plane graph is a planar graph with a fixed planar embedding. We give a combinatorial characterization of the plane gra...
متن کاملNon-aligned Drawings of Planar Graphs
A non-aligned drawing of a graph is a drawing where no two vertices are in the same row or column. Auber et al. showed that not all planar graphs have non-aligned drawings that are straight-line, planar, and in the minimal-possible n × n-grid. They also showed that such drawings exist if up to n− 3 edges may have a bend. In this paper, we give algorithms for non-aligned planar drawings that imp...
متن کاملHigher-Degree Orthogonal Graph Drawing with Flexibility Constraints
Much work on orthogonal graph drawing has focused on 4-planar graphs, that is planar graphs where all vertices have maximum degree 4. In this work, we study aspects of the Kandinsky model, which is a model for orthogonal graph drawings of higher-degree graphs. First, we examine the decision problem β-Embeddability, which asks whether for a given planar graph with a fixed or variable embedding, ...
متن کاملPlanar Octilinear Drawings with One Bend Per Edge
In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (45◦) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A k-planar graph is a planar graph in which each vertex has degree less or equal to k. In particular, we prove that every 4-planar graph admits a planar...
متن کامل