Automatic Speaker Recognition using LPCC and MFCC
نویسنده
چکیده
A person's voice contains various parameters that convey information such as emotion, gender, attitude, health and identity. This report talks about speaker recognition which deals with the subject of identifying a person based on their unique voiceprint present in their speech data. Pre-processing of the speech signal is performed before voice feature extraction. This process ensures the voice feature extraction contains accurate information that conveys the identity of the speaker. Voice feature extraction methods such as Linear Predictive Coding (LPC), Linear Predictive Cepstral Coefficients (LPCC) and Mel-Frequency Cepstral Coefficients (MFCC) are analysed and evaluated for their suitability for use in speaker recognition tasks. A new method which combined LPCC and MFCC (LPCC+MFCC) using fusion output was proposed and evaluated together with the different voice feature extraction methods. The speaker model for all the methods was computed using Vector QuantizationLinde, Buzo and Gray (VQ-LBG) method. Individual modelling and comparison for LPCC and MFCC is used for the LPCC+MFCC method. The similarity scores for both methods are then combined for identification decision. The results show that this method is better or at least comparable to the traditional methods such as LPCC and MFCC. Keywords— LPC,MFCC,VQ,LPCC,ASR. __________________________________________________*****_________________________________________________
منابع مشابه
Cochannel speaker count labelling based on the use of cepstral and pitch prediction derived features
Cochannel interference of speech signals is a common practical problem particularly in tactical communications. Ideally, separation of the individual speech signals is desired. However, it is known that when two equal bandwidth signals are added, such a separation is not possible. We examine the problem of identifying temporal regions or frames as being either one-speaker or two-speaker speech....
متن کاملA Comparative Study Of LPCC And MFCC Features For The Recognition Of Assamese Phonemes
In this paper two popular feature extraction techniques Linear Predictive Cepstral Coefficients (LPCC) and Mel Frequency Cepstral Coefficients (MFCC) have been investigated and their performances have been evaluated for the recognition of Assamese phonemes. A multilayer perceptron based baseline phoneme recognizer has been built and all the experiments have been carried out using that recognize...
متن کاملLPC and MFCC Analysis of Assamese Vowel Phonemes
A speech signal contains many levels of information. Speech conveys the information about the language being spoken, the emotion, gender, and the identity of the speaker. Features parameters extracted from speech are very useful for speaker recognition as well as speech recognition. In this paper, the features LPC and MFCC are computed of Assamese vowel phonemes which will be helpful to develop...
متن کاملFeature Extraction and Classification for Automatic Speaker Recognition System – A Review
Automatic speaker recognition (ASR) has found immense applications in the industries like banking, security, forensics etc. for its advantages such as easy implementation, more secure, more user friendly. To have a good recognition rate is a pre-requisite for any ASR system which can be achieved by making an optimal choice among the available techniques for ASR. In this paper, different techniq...
متن کاملIdentification of Sex of the Speaker With Reference To Bodo Vowels: A Comparative Experimental Study
This work presents an application of Fundamental Frequency (Pitch), Linear Predictive Cepstral Coefficient (LPCC) and Mel Frequency Cepstral Coefficient (MFCC) in identification of sex of the speaker in speech recognition research. The aim of this article is to compare the performance of these three methods for identification of sex of the speakers. A successful speech recognition system can he...
متن کامل