A Geometric Characterization of Solutions to The Algebraic Riccati Equation
ثبت نشده
چکیده
منابع مشابه
Linear quadratic problems with indefinite cost for discrete time systems
This paper deals with the discrete-time infinite-horizon linear quadratic problem with indefinite cost criterion. Given a discrete-time linear system, an indefinite costfunctional and a linear subspace of the state space, we consider the problem of minimizing the costfunctional over all inputs that force the state trajectory to converge to the given subspace. We give a geometric characterizatio...
متن کاملZeros of Spectral Factors, the Geometry of Splitting Subspaces, and the Algebraic Riccati Inequality*
In this paper we show how the zero dynamics of (not necessarily square) spectral factors relate to the splitting subspace geometry of stationary stochastic models and to the corresponding algebraic Riccati inequality. We introduce the notion of output-induced subspace of a minimal Markovian splitting subspace, which is the stochastic analogue of the supremal output-nulling subspace in geometric...
متن کاملThe generalised discrete algebraic Riccati equation in linear-quadratic optimal control
This paper investigates the properties of the solutions of the generalised discrete algebraic Riccati equation arising from the classic infinitehorizon linear quadratic (LQ) control problem. In particular, a geometric analysis is used to study the relationship existing between the solutions of the generalised Riccati equation and the output-nulling subspaces of the underlying system and the cor...
متن کاملIntervals of solutions of the discrete-time algebraic Riccati equation
If two solutions Y ≤ Z of the DARE are given then the set of solutions X with Y ≤ X ≤ Z can be parametrized by invariant subspaces of the closed loop matrix corresponding to Y . The paper extends the geometric theory of Willems from the continuous-time to the discrete-time ARE making the weakest possible assumptions.
متن کاملAnalytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations
This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...
متن کامل