A Quantum Chaos Clonal Multiobjective Evolutionary Method Reasearch
نویسنده
چکیده
A quantum chaos cloning multi-objective evolutionary algorithm was proposed herein based on chaos search ergodicity, quantum computing efficiency and clonal selection theory of antibodies in artificial immune system. The qubits encoded initial population is used in the new algorithm, Chaos quantum rotation gates are introduced to update individuals, crowding distance is used to keep solution population distribution and diversity. Theoretical analysis and simulation show the effectiveness of the algorithm.
منابع مشابه
A Quantum Immune Algorithm for Multiobjective Parallel Machine Scheduling
The study presents a novel quantum immune algorithm (QIA) for solving the parallel machine scheduling in the textile manufacturing industry. In this proposed algorithm, there are distinct characteristics as follows. First, the encoding method is based on Q-bit representation. Second, a novel mutation operator with a chaos-based rotation gate is proposed. Most importantly, two diversity schemes,...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملMultiobjective synchronization of coupled systems.
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real ...
متن کاملMultiobjective Optimization Using Ideas from the Clonal Selection Principle
In this paper, we propose a new multiobjective optimization approach based on the clonal selection principle. Our approach is compared with respect to other evolutionary multiobjective optimization techniques that are representative of the state-of-the-art in the area. In our study, several test functions and metrics commonly adopted in evolutionary multiobjective optimization are used. Our res...
متن کاملPareto-based Cost Simulated Annealing for Multiobjective Optimization
In this paper, a multiobjective simulated annealing (MOSA) method is introduced and discussed with the multiobjective evolutionary algorithms (MOEAs). Though the simulated annealing is a very powerful search algorithm and has shown good results in various singleobjective optimization fields, it has been seldom used for the multiobjective optimization because it conventionally uses only one sear...
متن کامل