A Decision Procedure for Herbrand Formulae without Skolemization

نویسنده

  • Timm Lampert
چکیده

This paper describes a decision procedure for disjunctions of conjunctions of anti-prenex normal forms of pure first-order logic (FOLDNFs) that do not contain ∨ within the scope of quantifiers. The disjuncts of these FOLDNFs are equivalent to prenex normal forms whose quantifier-free parts are conjunctions of atomic and negated atomic formulae (= Herbrand formulae). In contrast to the usual algorithms for Herbrand formulae, neither skolemization nor unification algorithms with function symbols are applied. Instead, a procedure is described that rests on nothing but equivalence transformations within pure first-order logic (FOL). This procedure involves the application of a calculus for negation normal forms (the NNF-calculus) with A ⊣⊢ A ∧ A (= ∧I) as the sole rule that increases the complexity of given FOLDNFs. The described algorithm illustrates how, in the case of Herbrand formulae, decision problems can be solved through a systematic search for proofs that reduce the number of applications of the rule ∧I to a minimum in the NNF-calculus. In the case of Herbrand formulae, it is even possible to entirely abstain from applying ∧I. Finally, it is shown how the described procedure can be used within an optimized general search for proofs of contradiction and what kind of questions arise for a ∧I-minimal proof strategy in the case of a general search for proofs of contradiction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Herbrand Theorems and Skolemization for Prenex Fuzzy Logics

Approximate Herbrand theorems are established for first-order fuzzy logics based on continuous t-norms, and used to provide proof-theoretic proofs of Skolemization for their Prenex fragments. Decidability and complexity results for particular fragments are obtained as consequences.

متن کامل

Herbrand Theorems: the Classical and Intuitionistic Cases

A unified approach is applied for the construction of sequent forms of the famous Herbrand theorem for first-order classical and intuitionistic logics without equality. The forms do not explore skolemization, have wording on deducibility, and as usual, provide a reduction of deducibility in the first-order logics to deducibility in their propositional fragments. They use the original notions of...

متن کامل

Herbrand-type Theorems: the Classical and Intuitionistic Cases

A unified approach to the construction of original forms of the famous Herbrand theorem is suggested for first-order classical and intuitionistic logics without equality. It does not explore skolemization, have wording on deducibility, and as usual, makes the reduction of deducibility in the first-order logics to deducibility in their propositional fragments. The forms use the original notions ...

متن کامل

Herbrand Theorems for Substructural Logics

Herbrand and Skolemization theorems are obtained for a broad family of first-order substructural logics. These logics typically lack equivalent prenex forms, a deduction theorem, and reductions of semantic consequence to satisfiability. The Herbrand and Skolemization theorems therefore take various forms, applying either to the left or right of the consequence relation, and to restricted classe...

متن کامل

Unified QBF certification and its applications

Quantified Boolean formulae (QBF) allow compact encoding of many decision problems. Their importance motivated the development of fast QBF solvers. Certifying the results of a QBF solver not only ensures correctness, but also enables certain synthesis and verification tasks. To date the certificate of a true formula can be in the form of either a syntactic cube-resolution proof or a semantic Sk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.00191  شماره 

صفحات  -

تاریخ انتشار 2017