Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells
نویسندگان
چکیده
Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid-binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation.
منابع مشابه
Poor Understanding of Radiation Profiles in Deep Space Causes Inaccurate Findings and Misleading Conclusions
The radiation environment in deep space, where astronauts are behind the shelter provided by the Earth’s magnetosphere, is a major health concern. Galactic cosmic rays (GCR) and solar particle events (SPE) are two basic sources of space radiation in the solar system. The health risks of exposure to high levels of space radiation can be observed either as acute and delayed effects. Zhang et al. ...
متن کاملEffect of famotidine on radiation induced apoptosis in human peripheral blood leukocytes
ABSTRACTBackground: Radioprotective effects of famotidine, an antagonist of H2 receptor clinically used for peptic ulcer treatment, was previously shown on radiation-induced micronuclei and chromosomal aberration in human peripheral blood lymphocytes and mouse bone marrow cells. This study was conducted to investigate radioprotective property of famotidine against radiation induced apoptosis i...
متن کاملLow-dose γ-irradiation induces dual radio-adaptive responses depending on the post-irradiation time by altering microRNA expression profiles in normal human dermal fibroblasts.
Exposure to high-dose ionizing radiation, including γ-radiation, induces severe skin disorders. However, the biological consequences and molecular mechanisms responsible for the response of human skin to low-dose γ-radiation (LDR) are largely unknown. In the present study, we demonstrate that LDR (0.1 Gy) induces distinct cellular responses in normal human dermal fibroblasts (NHDFs) depending o...
متن کاملIntermittent low dose irradiation enhances the effectiveness of radio-therapy for human breast adenocarcinoma cell line MDA–MB–231
Introduction: Hormesis and adaptive responses are two important biological effects of low-dose ionizing radiation (LDIR) in organism and mammalian cell lines. Notably, LDIR generates distinct biological effects in cancer cells from normal cells, e.g., it may affect the growth of cancer cells via the activation of certain cell signaling pathway, which does not exist in normal ...
متن کاملEffects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کامل