A fracture mapping and extended finite element scheme for coupled deformation and fluid flow in fractured porous media

نویسندگان

  • Anthony R. Lamb
  • Gerard J. Gorman
  • Derek Elsworth
چکیده

This paper presents a fracture mapping (FM) approach combined with the extended finite element method (XFEM) to simulate coupled deformation and fluid flow in fractured porous media. Specifically, the method accurately represents the impact of discrete fractures on flow and deformation, although the individual fractures are not part of the finite element mesh. A key feature of FM-XFEM is its ability to model discontinuities in the domain independently of the computational mesh. The proposed FM approach is a continuum-based approach that is used to model the flow interaction between the porous matrix and existing fractures via a transfer function. Fracture geometry is defined using the level set method. Therefore, in contrast to the discrete fracture flow model, the fracture representation is not meshed along with the computational domain. Consequently, the method is able to determine the influence of fractures on fluid flow within a fractured domain without the complexity of meshing the fractures within the domain. The XFEM component of the scheme addresses the discontinuous displacement field within elements that are intersected by existing fractures. In XFEM, enrichment functions are added to the standard finite element approximation to adequately resolve discontinuous fields within the simulation domain. Numerical tests illustrate the ability of the method to adequately describe the displacement and fluid pressure fields within a fractured domain at significantly less computational expense than explicitly resolving the fracture within the finite element mesh. Copyright © 2013 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Fluid-Solid Coupling in Fractured Porous Media with Discrete Fracture Model and Extended Finite Element Method

Fluid-solid coupling is ubiquitous in the process of fluid flow underground and has a significant influence on the development of oil and gas reservoirs. To investigate these phenomena, the coupled mathematical model of solid deformation and fluid flow in fractured porous media is established. In this study, the discrete fracture model (DFM) is applied to capture fluid flow in the fractured por...

متن کامل

Numerical modeling of stress-dependent permeability

In this paper, conceptual models are presented to identify the effects of solid deformation on the changes in rock permeabilities for (a) fractured media, (b) intact media, and (c) fractured porous media subjected to external loads, all in steady state conditions. Finite element schemes are then developed with embedded correlations between induced strain and modified permeability to simulate th...

متن کامل

Numerical Evaluation of Hydraulic Fracturing Pressure in a Two-Phase Porous Medium

Hydraulic fracturing is a phenomenon in which cracks propagate through the porous medium due to high pore fluid pressure. Hydraulic fracturing appears in different engineering disciplines either as a destructive phenomenon or as a useful technique. Modeling of this phenomenon in isothermal condition requires analysis of soil deformation, crack and pore fluid pressure interactions. In this paper...

متن کامل

Simulation of Coupled Single-phase Flow and Geomechanics in Fractured Porous Media

Accurate predictions of the complex interactions between fluid-flow and mechanical deformation in fractured geologic formations is of interest in a wide range of reservoir engineering applications including subsurface CO2 sequestration, heavy-oil recovery, and wellbore stability. In this report, we describe a fully implicit method for coupled geomechanics and fluid flow in naturally fractured p...

متن کامل

An Unfitted Method for Two-phase Flow in Fractured Porous Media

We propose an efficient computational method to simulate two-phase flow in fractured porous media. Instead of refining the grid to capture the flow along the faults or fractures, we represent them as immersed interfaces with reduced model for the flow and suitable coupling conditions. We allow for non matching grids between the porous matrix and the fracture to increase the flexibility of the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013