Anisotropic Franklin bases on polygonal domains

نویسندگان

  • George Kyriazis
  • Kyungwon Park
  • Pencho Petrushev
چکیده

R 2 are explored. Mild conditions are imposed on the triangulations which prevent them from deterioration and at the same time allow for a lot of flexibility and, in particular, arbitrarily sharp angles. It is shown that such anisotropic Franklin systems are Schauder bases for C and L1, and unconditional bases for Lp (1 < p < ∞) and the corresponding Hardy spaces H1. It is also proved that the anisotropic H1 is exactly the space of all functions in L1 for which the corresponding Franklin system expansions converge unconditionally in L1. Finally, it is shown that the Franklin bases characterize the corresponding anisotropic BMO spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of Powell–Sabin Wavelets

Recently we developed multiscale spaces of C piecewise quadratic polynomials relative to arbitrary polygonal domains Ω ⊂ R. These multiscale bases are weakly stable with respect to the L2 norm. In this paper we show that these bases form strongly stable Riesz bases for the Sobolev spaces Hs(Ω) with s ∈ (2, 5 2 ).

متن کامل

C Hierarchical Riesz Bases of Lagrange Type on Powell–Sabin Triangulations

In this paper we construct C continuous piecewise quadratic hierarchical bases on Powell–Sabin triangulations of arbitrary polygonal domains in R. Our bases are of Lagrange type instead of the usual Hermite type and we prove that they form strongly stable Riesz bases for the Sobolev spaces Hs(Ω) with s ∈ (1, 5 2 ). Especially the case s = 2 is of interest, because we can use the corresponding h...

متن کامل

Non-homogeneous polygonal Markov fields in the plane: graphical representations and geometry of higher order correlations

We consider polygonal Markov fields originally introduced by Arak and Surgailis [2]. Our attention is focused on fields with nodes of order two, which can be regarded as continuum ensembles of non-intersecting contours in the plane, sharing a number of features with the two-dimensional Ising model. We introduce non-homogeneous version of polygonal fields in anisotropic enviroment. For these fie...

متن کامل

Approximation by Bases on Polygonal Complexes

We consider the approximation properties of a class of bases defined on refined polygonal complexes. This class includes many bases used in geometric modeling for surfaces of arbitrary topology, subdivision surfaces in particular. We show that under moderately weak assumptions, the approximation rate of the bases in our class is no worse than the approximation rate of these bases restricted to ...

متن کامل

A Convergent Finite Volume type O-method on Evolving Surfaces

We present a finite volume scheme for anisotropic diffusion on evolving hypersurfaces. The underlying motion is assumed to be described by a fixed, not necessarily normal, velocity field. The ingredients of the numerical method are an approximation of the family of surfaces by a family of interpolating polygonal meshes, where grid vertices move on motion trajectories, a consistent finite volume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006