Lattice and discrete Boltzmann equations for fully compressible flow

نویسنده

  • Paul J. Dellar
چکیده

Equilibria for the common two-dimensional, nine-velocity (D2Q9) lattice Boltzmann equation are not uniquely determined by the Navier–Stokes equations. An otherwise undetermined function must be chosen to suppress grid-scale instabilities. By contrast, the Navier–Stokes–Fourier equations with heat conduction determine unique equilibria for a one-dimensional, five-velocity (D1Q5) model on an integer lattice. Although these equilibria are subject to grid-scale instabilities under the usual lattice Boltzmann streaming and collision steps, the equivalent discrete Boltzmann equation is stable when discretized using conventional finite volume schemes. For flows with substantial shock waves, stability is confined to a window for the parameter controlling the mean free path. It is constrained between needing a large enough mean free path (large enough viscosity) to provide dissipation at shocks, and a small enough mean free path to ensure valid hydrodynamic behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank

In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Performance of 1-D and 2-D Lattice Boltzmann (LB) in Solution of the Shock Tube Problem

In this paper we presented a lattice Boltzmann with square grid for compressible flow problems. Triple level velocity is considered for each cell. Migration step use discrete velocity but continuous parameters are utilized to calculate density, velocity, and energy. So, we called this semi-discrete method. To evaluate the performance of the method the well-known shock tube problem is solved, us...

متن کامل

Asymptotic analysis of the lattice Boltzmann equation

In this article we analyze the lattice Boltzmann equation (LBE) by using the asymptotic expansion technique. We first relate the LBE to the finite discrete-velocity model (FDVM) of the Boltzmann equation with the diffusive scaling. The analysis of this model directly leads to the incompressible Navier–Stokes equations, as opposed to the compressible Navier–Stokes equations obtained by the Chapm...

متن کامل

Numerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method

The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006