Gravity Wave Dynamics in a Mesospheric Inversion Layer: 1. Reflection, Trapping, and Instability Dynamics

نویسندگان

  • David C Fritts
  • Brian Laughman
  • Ling Wang
  • Thomas S Lund
  • Richard L Collins
چکیده

An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large-amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller-amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural dynamics in northern Atlas of Tunisian, Jendouba area: insights from geology and gravity data

This paper presents a new interpretation of the geometry of Triassic alignment of J. Sidi Mahdi –J. Zitoun in Medjerda Valley Plain (Northern Tunisia) based on detailed analysis of gravity and seismic reflection data. The main results of gravity analysis do not show a distinguish gravity anomaly over Triassic evaporites bodies. The positive gravity anomaly seems to be related to the entire stru...

متن کامل

Observations of mesospheric gravity wave dynamics in the southern hemisphere

Observations of mesospheric OH rotational temperature by the Mesospheric Temperature Mapper located at Cerro Pachon, Chile (30.3°S, 70.7°S) show a large range of variation. Temperature variances reveal increased activity due to mountain waves. Comparative studies with the satellite carried SABER instrument show agreement on nightly, as well as seasonal, temperature measurements. Comparisons wit...

متن کامل

The Trapping and Instability of Directional Gravity Waves in Localized Water Currents

The influence of localized water currents on the nonlinear dynamics and stability of large amplitude, statistically distributed gravity waves is investigated theoretically and numerically by means of an evolution equation for a Wigner function governing the spectrum of waves. It is shown that water waves propagating in the opposite direction of a localized current channel can be trapped in the ...

متن کامل

Dynamics of Love-Type Waves in Orthotropic Layer Under the Influence of Heterogeneity and Corrugation

The present problem deals with the propagation of Love-type surface waves in a bedded structure comprises of an inhomogeneous orthotropic layer and an elastic half-space. The upper boundary and the interface between two media are considered to be corrugated. An analytical method (separation of variables) is adapted to solve the second order PDEs, which governs the equations of motion. Equations...

متن کامل

Instability of MHD-modified interfacial gravity waves revisited

We reveal the basic mechanism of instability of the two-layer conductive fluid system carrying a normal current and exposed to a uniform external magnetic field. This process is a reflection of a MHD-modified interfacial gravity wave from the boundary. Due to special boundary conditions, the reflection coefficient turns out to be greater than 1 for some directions of the wave propagation. We co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2018