Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.

نویسندگان

  • Eddie J Cytryn
  • Dipen P Sangurdekar
  • John G Streeter
  • William L Franck
  • Woo-Suk Chang
  • Gary Stacey
  • David W Emerich
  • Trupti Joshi
  • Dong Xu
  • Michael J Sadowsky
چکیده

The growth and persistence of rhizobia and bradyrhizobia in soils are negatively impacted by drought conditions. In this study, we used genome-wide transcriptional analyses to obtain a comprehensive understanding of the response of Bradyrhizobium japonicum to drought. Desiccation of cells resulted in the differential expression of 15 to 20% of the 8,453 [corrected] B. japonicum open reading frames, with considerable differentiation between early (after 4 h) and late (after 24 and 72 h) expressed genes. While 225 genes were universally up-regulated at all three incubation times in response to desiccation, an additional 43 and 403 up-regulated genes were common to the 4/24- and 24/72-h incubation times, respectively. Desiccating conditions resulted in the significant induction (>2.0-fold) of the trehalose-6-phosphate synthetase (otsA), trehalose-6-phosphate phosphatase (otsB), and trehalose synthase (treS) genes, which encode two of the three trehalose synthesis pathways found in B. japonicum. Gene induction was correlated with an elevated intracellular concentration of trehalose and increased activity of trehalose-6-phosphate synthetase, collectively supporting the hypothesis that this disaccharide plays a prominent and important role in promoting desiccation tolerance in B. japonicum. Microarray data also indicated that sigma(54)- and sigma(24)-associated transcriptional regulators and genes encoding isocitrate lyase, oxidative stress responses, the synthesis and transport of exopolysaccharides, heat shock response proteins, enzymes for the modification and repair of nucleic acids, and the synthesis of pili and flagella are also involved in the response of B. japonicum to desiccation. Polyethylene glycol-generated osmotic stress induced significantly fewer genes than those transcriptionally activated by desiccation. However, 67 genes were commonly induced under both conditions. Taken together, these results suggest that B. japonicum directly responds to desiccation by adapting to changes imparted by reduced water activity, such as the synthesis of trehalose and polysaccharides and, secondarily, by the induction of a wide variety of proteins involved in protection of the cell membrane, repair of DNA damage, stability and integrity of proteins, and oxidative stress responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Indole-3-Acetic Acid on the Transcriptional Activities and Stress Tolerance of Bradyrhizobium japonicum

A genome-wide transcriptional profile of Bradyrhizobium japonicum, the nitrogen-fixing endosymbiont of the soybean plant, revealed differential expression of approximately 15% of the genome after a 1 mM treatment with the phytohormone indole-3-acetic acid (IAA). A total of 1,323 genes were differentially expressed (619 up-regulated and 704 down-regulated) at a two-fold cut off with q value ≤ 0....

متن کامل

Characterization of a Functional Role of the Bradyrhizobium japonicum Isocitrate Lyase in Desiccation Tolerance

Bradyrhizobium japonicum is a nitrogen-fixing symbiont of soybean. In previous studies, transcriptomic profiling of B. japonicum USDA110, grown under various environmental conditions, revealed the highly induced gene aceA, encoding isocitrate lyase (ICL). The ICL catalyzes the conversion of isocitrate to succinate and glyoxylate in the glyoxylate bypass of the TCA cycle. Here, we evaluated the ...

متن کامل

Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation.

Trehalose, a disaccharide accumulated by many microorganisms, acts as a protectant during periods of physiological stress, such as salinity and desiccation. Previous studies reported that the trehalose biosynthetic genes (otsA, treS, and treY) in Bradyrhizobium japonicum were induced by salinity and desiccation stresses. Functional mutational analyses indicated that disruption of otsA decreased...

متن کامل

Genome-wide transcriptional and physiological responses of Bradyrhizobium japonicum to paraquat-mediated oxidative stress.

The rhizobial bacterium Bradyrhizobium japonicum functions as a nitrogen-fixing symbiont of the soybean plant (Glycine max). Plants are capable of producing an oxidative burst, a rapid proliferation of reactive oxygen species (ROS), as a defense mechanism against pathogenic and symbiotic bacteria. Therefore, B. japonicum must be able to resist such a defense mechanism to initiate nodulation. In...

متن کامل

Gene Probe Designing for Evaluation of the Diversity of Bradyrhizobium japonicum Isolates

Many researchers consider the use of different probes for hybridization assays as suitable for studying the genetic diversity of nitrogen fixing bacteria. In this study for asessing genetic diversity among Bradyrhizobium japonicum isolates, two different probes (sucA and topA) chosen from the chromosomal genome of Bradyrhizobium strain USDA 110 were designed, evaluated by DNAMAN software and im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 19  شماره 

صفحات  -

تاریخ انتشار 2007