An RNA-aptamer-based two-color CRISPR labeling system
نویسندگان
چکیده
The spatial organization and dynamics of chromatin play important roles in essential biological functions. However, direct visualization of endogenous genomic loci in living cells has proven to be laborious until the recent development of CRISPR-Cas9-based chromatin labeling methods. These methods rely on the recognition of specific DNA sequences by CRISPR single-guide RNAs (sgRNAs) and fluorescent-protein-fused catalytically inactive Cas9 to label specific chromatin loci in cells. Previously, multicolor chromatin labeling has been achieved using orthogonal Cas9 proteins from different bacterial species fused to different fluorescent proteins. Here we report the development of an alternative two-color CRISPR labeling method using only the well-characterized Streptococcus pyogenes Cas9, by incorporating MS2 or PP7 RNA aptamers into the sgRNA. The MS2 or PP7 aptamers then recruit the corresponding MS2 or PP7 coat proteins fused with different fluorescent proteins to the target genomic loci. Here we demonstrate specific and orthogonal two-color labeling of repetitive sequences in living human cells using this method. By attaching the MS2 or PP7 aptamers to different locations on the sgRNA, we found that extending the tetraloop and stem loop 2 of the sgRNA with MS2 or PP7 aptamers enhances the signal-to-background ratio of chromatin imaging.
منابع مشابه
Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system.
Visualization of chromosomal dynamics is important for understanding many fundamental intra-nuclear processes. Efficient and reliable live-cell multicolor labeling of chromosomal loci can realize this goal. However, the current methods are constrained mainly by insufficient labeling throughput, efficiency, flexibility as well as photostability. Here we have developed a new approach to realize d...
متن کاملTracking CRISPR targeting
Over the last few years, CRISPR has become a vital tool for scientists, as the bacterial acquired immunity system has been adapted to function in eukaryotic cells as a means to edit the genome, modulate gene expression, and label chromosomes for live cell imaging. The biochemical activity of CRISPR complexes—consisting of the Cas9 nuclease and an RNA that guides it to fi nd and cleave a specifi...
متن کاملTargeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome
The potent ability of CRISPR/Cas9 system to inhibit the expression of targeted gene is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of CRISPR/Cas9 into specific cell populations is still the principal challenge in the clinical development of CRISPR/Cas9 therapeutics. In this study, a flexible aptamer-liposome-CRISPR/Cas9 chim...
متن کاملLabeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.
RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA), an RNA aptamer that can specifically bind to malachite green (MG) dye and ind...
متن کاملCRISPR-Cas: the effective immune systems in the prokaryotes
Approximately all sequenced archaeal and half of eubacterial genomes have some sort of adaptive immune system, which enables them to target and cleave invading foreign genetic elements by an RNAi-like pathway. CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems consist of the CRISPR loci with multiple copies of a short repeat sequence separa...
متن کامل