Rainbow spanning trees in complete graphs colored by one-factorizations
نویسنده
چکیده
Brualdi and Hollingsworth conjectured that, for even n, in a proper edge coloring of Kn using precisely n − 1 colors, the edge set can be partitioned into n2 spanning trees which are rainbow (and hence, precisely one edge from each color class is in each spanning tree). They proved that there always are two edge disjoint rainbow spanning trees. Kaneko, Kano and Suzuki improved this to three edge disjoint rainbow spanning trees. Recently, Carraher, Hartke and the author proved a theorem improving this to n logn rainbow spanning trees, even when more general edge colorings of Kn are considered. In this paper, we show that if Kn is properly edge colored with n−1 colors, a positive fraction of the edges can be covered by edge disjoint rainbow spanning trees.
منابع مشابه
Edge-disjoint rainbow spanning trees in complete graphs
Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges (the edgecoloring is not necessarily proper). A rainbow spanning tree is a spanning tree of G where each edge has a different color. Brualdi and Hollingsworth [4] conjectured that every properly edge-colored Kn (n ≥ 6 and even) using exactly n−1 colors has n/2 edge-disjoint rainbow spanning trees, and they proved...
متن کاملRainbow spanning subgraphs of edge-colored complete graphs
Consider edge-colorings of the complete graph Kn. Let r(n, t) be the maximum number of colors in such a coloring that does not have t edge-disjoint rainbow spanning trees. Let s(n, t) be the maximum number of colors in such a coloring having no rainbow spanning subgraph with diameter at most t. We prove r(n, t) = (n−2 2 )
متن کاملRainbow spanning trees in properly coloured complete graphs
In this short note, we study pairwise edge-disjoint rainbow spanning trees in properly edge-coloured complete graphs, where a graph is rainbow if its edges have distinct colours. Brualdi and Hollingsworth conjectured that every Kn properly edge-coloured by n−1 colours has n/2 edge-disjoint rainbow spanning trees. Kaneko, Kano and Suzuki later suggested this should hold for every properly edge-c...
متن کاملRainbow Spanning Subgraphs of Small Diameter in Edge-Colored Complete Graphs
Let s(n, t) be the maximum number of colors in an edge-coloring of the complete graph Kn that has no rainbow spanning subgraph with diameter at most t. We prove s(n, t) = (n−2 2 ) +1 for n, t ≥ 3, while s(n, 2) = (n−2 2 )
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 87 شماره
صفحات -
تاریخ انتشار 2018