Richtmyer-Meshkov instability: theory of linear and nonlinear evolution.

نویسندگان

  • K Nishihara
  • J G Wouchuk
  • C Matsuoka
  • R Ishizaki
  • V V Zhakhovsky
چکیده

A theoretical framework to study linear and nonlinear Richtmyer-Meshkov instability (RMI) is presented. This instability typically develops when an incident shock crosses a corrugated material interface separating two fluids with different thermodynamic properties. Because the contact surface is rippled, the transmitted and reflected wavefronts are also corrugated, and some circulation is generated at the material boundary. The velocity circulation is progressively modified by the sound wave field radiated by the wavefronts, and ripple growth at the contact surface reaches a constant asymptotic normal velocity when the shocks/rarefactions are distant enough. The instability growth is driven by two effects: an initial deposition of velocity circulation at the material interface by the corrugated shock fronts and its subsequent variation in time due to the sonic field of pressure perturbations radiated by the deformed shocks. First, an exact analytical model to determine the asymptotic linear growth rate is presented and its dependence on the governing parameters is briefly discussed. Instabilities referred to as RM-like, driven by localized non-uniform vorticity, also exist; they are either initially deposited or supplied by external sources. Ablative RMI and its stabilization mechanisms are discussed as an example. When the ripple amplitude increases and becomes comparable to the perturbation wavelength, the instability enters the nonlinear phase and the perturbation velocity starts to decrease. An analytical model to describe this second stage of instability evolution is presented within the limit of incompressible and irrotational fluids, based on the dynamics of the contact surface circulation. RMI in solids and liquids is also presented via molecular dynamics simulations for planar and cylindrical geometries, where we show the generation of vorticity even in viscid materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear dynamics of the Richtmyer-Meshkov instability in supernovae

We report analytical and numerical solutions describing the evolution of the coherent structure of bubbles and spikes in the Richtmyer-Meshkov instability in supernovae. It is shown that the dynamics of the flow is essentially non-local, and the nonlinear Richtmyer-Meshkov bubble flattens and decelerates.

متن کامل

Quantitative Theory of Richtmyer-meshkov Instability in Three Dimensions

A material interface between two fluids of different density accelerated by a shock wave is unstable. This instability is known as Richtmyer-Meshkov (RM) instability. Previous theoretical and numerical studies primarily focused on fluids in two dimensions. In this paper, we present the studies of RichtmyerMeshkov instability in three dimensions in rectangular coordinates. There are three main r...

متن کامل

An Analytical Nonlinear Theory of Richtmyer- Meshkov Instability

Richtmyer-Meshkov instability is a fingering instability which occurs at a material interface accelerated by a shock wave. We present an analytic, explicit prediction for the growth rate of the unstable interface. The theoretical prediction agrees, for the first time, with the experimental data on air-SF6, and is in remarkable agreement with the results of recent full non-linear numerical simul...

متن کامل

UWFDM-1172 Experiments on the Richtmyer-Meshkov Instability II: Nonlinear Evolution of a Shocked Membraneless Single-Mode Sinusoidal Interface

An experimental investigation of the shock-induced interfacial instability (RichtmyerMeshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the nonlinear regime. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially sep...

متن کامل

Nonlinear evolution of the Richtmyer-Meshkov instability

We report analytical and numerical results describing the dynamics of the two-dimensional coherent structure of bubbles and spikes in the Richtmyer-Meshkov instability for fluids with a finite density ratio. The theory accounts for the non-local properties of the interface evolution, and the simulations treat the interface as a discontinuity. Good agreement between the analytical and numerical ...

متن کامل

Viscous non-linear theory of Richtmyer-Meshkov Instability

We propose a quantitative prediction of the effect of viscosity on the weakly non-linear impulsive Richtmyer-Meshkov instability between two fluids of arbitrary densities and viscosities. This theory is based on an asymptotic analysis of the Navier-Stokes equations using singular perturbation techniques. The law obtained for the interface deformation does not agree with former theoretical predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 368 1916  شماره 

صفحات  -

تاریخ انتشار 2010