Efficient well-balanced hydrostatic upwind schemes for shallow-water equations

نویسندگان

  • Christophe Berthon
  • Françoise Foucher
چکیده

The proposed work concerns the numerical approximations of the shallow-water equations with varying topography. The main objective is to introduce an easy and systematic technique to enforce the well-balance property and to make the scheme able to deal with dry areas. To access such an issue, the derived numerical method is obtained by involving the free surface instead of the water height and this produces the scheme well-balanced independently from the numerical flux function associated with the homogeneous problem. As a consequence, we obtain an easy well-balanced scheme which preserves non negative water height. When compared with the wellknown hydrostatic reconstruction, the presented topography discretization does not involve any max function known to introduce some numerical errors as soon as the topography admits very strong variations or discontinuities. A second-order MUSCL accurate reconstruction is adopted. The proposed hydrostatic upwind scheme is next extended for considering 2D simulations performed over unstructured meshes. Several 1D and 2D numerical experiments are performed to exhibit the relevance of the scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrostatic Upwind Schemes for Shallow–Water Equations

We consider the numerical approximation of the shallow–water equations with non–flat topography. We introduce a new topography discretization that makes all schemes to be well–balanced and robust. At the discrepancy with the well–known hydrostatic reconstruction, the proposed numerical procedure does not involve any cut–off. Moreover, the obtained scheme is able to deal with dry areas. Several ...

متن کامل

Central-Upwind Scheme for Shallow Water Equations with Discontinuous Bottom Topography

Finite-volume central-upwind schemes for shallow water equations were proposed in [A. Kurganov and G. Petrova, Commun. Math. Sci., 5 (2007), 133–160]. These schemes are capable of maintaining “lake-at-rest” steady states and preserving the positivity of the computed water depth. The well-balanced and positivity preserving features of the central-upwind schemes are achieved, in particular, by us...

متن کامل

Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of cons...

متن کامل

Robust finite volume schemes for simulating waves in the solar atmosphere

We present well-balanced high-resolution finite volume schemes for simulating waves in the outer solar atmosphere. The schemes approximate the stratified MHD equations with an upwind discretization of the Godunov-Powell source term and a locally hydrostatic pressure reconstruction that preserves discrete steady states. The paper summarizes recent articles [4, 5, 6].

متن کامل

A Second-order Well-balanced Positivity Preserving Central-upwind Scheme for the Saint-venant System

A family of Godunov-type central-upwind schemes for the Saint-Venant system of shallow water equations has been first introduced in [A. Kurganov and D. Levy, M2AN Math. Model. Numer. Anal., 36, 397-425, 2002]. Depending on the reconstruction step, the second-order versions of the schemes there could be made either well-balanced or positivity preserving, but fail to satisfy both properties simul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012