Self-assembled monolayer growth on chemically modified polymer surfaces

نویسندگان

  • S. Pimanpang
  • Pei-I. Wang
  • G.-C. Wang
  • T.-M. Lu
چکیده

We report a study of the self-assembled monolayer (SAM) growth of bis[3(triethoxysilane)propyl]tetrasulfide (Tetrasulfide) on low dielectric constant (low-k) aromatic hydrocarbon SiLK whose surface chemistry was modified using sulfuric acid, He plasma treatment, and N2 plasma treatment. X-ray photoelectron spectroscopy (XPS) spectra show that there is no detectable growth of Tetrasulfide SAM on untreated SiLK surfaces. After the SiLK surfaces have been treated with sulfuric acid, He plasma, or N2 plasma, the original chemically inert polymer surfaces are functionalized with polar groups resulting in a significant improvement of their wettability, which is confirmed by their reduction of water droplet contact angles. The introduction of polar functional groups thus facilitates the formation of Tetrasulfide SAM on the polymer surfaces. Atomic force microscopy (AFM) analysis shows an insignificant change in the surface morphology after the growth of Tetrasulfide SAM on the chemically modified SiLK surfaces. Quantitative XPS analysis also showed that Tetrasulfide SAM growth is more prominent on He and N2 plasma treated surfaces than those treated by sulfuric acid. # 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drop impact on chemically structured arrays

We describe recent investigations on the impact behaviour of liquid drops onto chemically structured surfaces. The surface patterns were prepared via photochemical attachment of polymer molecules with different hydrophilicities using self-assembled monolayers of benzophenone bearing silanes. Immobilization of the polymer monolayers was followed by an ablation process to generate a chemical surf...

متن کامل

Correlation between Adhesion Hysteresis and Phase State of Monolayer Films

Chemisorbed films of hydrolyzed hexadecyltrichlorosilane (C13Si(CHz)&H3) on elastomeric poly(dimethylsi1oxane)s (PDMS) were used as model systems to study adhesion between polymer surfaces. The adhesion energies of these chemically modified surfaces were estimated by measuring the deformations that resulted on contacting small semispherical lenses and flat sheets of the polymer under controlled...

متن کامل

Regulated growth of diatom cells on self-assembled monolayers

We succeeded in regulating the growth of diatom cells on chemically modified glass surfaces. Glass surfaces were functionalized with -CF3, -CH3, -COOH, and -NH2 groups using the technique of self-assembled monolayers (SAM), and diatom cells were subsequently cultured on these surfaces. When the samples were rinsed after the adhesion of the diatom cells on the modified surfaces, the diatoms form...

متن کامل

Manipulating Siloxane Surfaces: Obtaining the Desired Surface Function via Engineering Design

We present a synopsis of recent accomplishment in our group in the area of surface-functionalized silicone elastomer networks. Specifically, we show that by combining mechanical manipulation of poly(dimethylsiloxane) (PDMS) networks with activation via ultraviolet/ozone (UVO) treatment and subsequent chemical modification of the preactivated surfaces, one can generate so-called mechanically ass...

متن کامل

Patterned CVD Growth of SWNTs for Device Application

Japan Several patterned growth techniques of single-walled carbon nanotubes (SWNTs) by modifing the dip-coating process are discussed. The conventional concept of using SiO2 patterned Si substrates to selectively grow 3D carbon nanotube structures can be applied to a dip-coating method followd by alcohol CVD growth. High-quality vertically aligned single-walled carbon nanotube (SWNT) patterns c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006