Notes on Schubert, Grothendieck and Key Polynomials
نویسنده
چکیده
We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco–Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
منابع مشابه
Multivariate Polynomials in Sage
We have developed a patch implementing multivariate polynomials seen as a multi-base algebra. The patch is to be released into the software Sage and can already be found within the Sage-Combinat distribution. One can use our patch to define a polynomial in a set of indexed variables and expand it into a linear basis of the multivariate polynomials. So far, we have the Schubert polynomials, the ...
متن کاملQuantum Grothendieck Polynomials
Quantum K-theory is a K-theoretic version of quantum cohomology, which was recently defined by Y.-P. Lee. Based on a presentation for the quantum K-theory of the classical flag variety Fln, we define and study quantum Grothendieck polynomials. We conjecture that they represent Schubert classes (i.e., the natural basis elements) in the quantum K-theory of Fln, and present strong evidence for thi...
متن کاملCombinatorial Aspects of the Cohomology and K-theory of Flag Varieties
In this talk we present some recent results related to Schubert and Grothendieck polynomials. These polynomials represent Schubert classes, which form the natural bases of the cohomology and K-theory of the complex flag variety. We present background information on several combinatorial constructions of Schubert and Grothendieck polynomials. Then we present the solution to a conjecture concerni...
متن کاملGröbner geometry of Schubert polynomials
Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...
متن کاملFe b 20 02 Gröbner geometry of Schubert polynomials
Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...
متن کامل