Astemizole Synergizes Calcitriol Antiproliferative Activity by Inhibiting CYP24A1 and Upregulating VDR: A Novel Approach for Breast Cancer Therapy
نویسندگان
چکیده
BACKGROUND Calcitriol antiproliferative effects include inhibition of the oncogenic ether-à-go-go-1 potassium channel (Eag1) expression, which is necessary for cell cycle progression and tumorigenesis. Astemizole, a new promising antineoplastic drug, targets Eag1 by blocking ion currents. Herein, we characterized the interaction between calcitriol and astemizole as well as their conjoint antiproliferative action in SUM-229PE, T-47D and primary tumor-derived breast cancer cells. METHODOLOGY/PRINCIPAL FINDINGS Molecular markers were studied by immunocytochemistry, Western blot and real time PCR. Inhibitory concentrations were determined by dose-response curves and metabolic activity assays. At clinically achievable drug concentrations, synergistic antiproliferative interaction was observed between calcitriol and astemizole, as calculated by combination index analysis (CI <1). Astemizole significantly enhanced calcitriol's growth-inhibitory effects (3-11 folds, P<0.01). Mean IC(20) values were 1.82 ± 2.41 nM and 1.62 ± 0.75 µM; for calcitriol (in estrogen receptor negative cells) and astemizole, respectively. Real time PCR showed that both drugs alone downregulated, while simultaneous treatment further reduced Ki-67 and Eag1 gene expression (P<0.05). Astemizole inhibited basal and calcitriol-induced CYP24A1 and CYP3A4 mRNA expression (cytochromes involved in calcitriol and astemizole degradation) in breast and hepatoma cancer cells, respectively, while upregulated vitamin D receptor (VDR) expression. CONCLUSIONS/SIGNIFICANCE Astemizole synergized calcitriol antiproliferative effects by downregulating CYP24A1, upregulating VDR and targeting Eag1. This study provides insight into the molecular mechanisms involved in astemizole-calcitriol combined antineoplastic effect, offering scientific support to test both compounds in combination in further preclinical and clinical studies of neoplasms expressing VDR and Eag1. VDR-negative tumors might also be sensitized to calcitriol antineoplastic effects by the use of astemizole. Herein we suggest a novel combined adjuvant therapy for the management of VDR/Eag1-expressing breast cancer tumors. Since astemizole improves calcitriol bioavailability and activity, decreased calcitriol dosing is advised for conjoint administration.
منابع مشابه
VDR activity is differentially affected by Hic-5 in prostate cancer and stromal cells.
UNLABELLED Patients with prostate cancer treated with androgen deprivation therapy (ADT) eventually develop castrate-resistant prostate cancer (CRPC). 1,25-Dihydroxyvitamin D3 (1,25D3/calcitriol) is a potential adjuvant therapy that confers antiproliferative and pro-differentiation effects in vitro, but has had mixed results in clinical trials. The impact of the tumor microenvironment on 1,25D3...
متن کاملSignal Transduction VDR Activity Is Differentially Affected by Hic-5 in Prostate Cancer and Stromal Cells
Patients with prostate cancer treated with androgen deprivation therapy (ADT) eventually develop castrateresistant prostate cancer (CRPC). 1,25-DihydroxyvitaminD3 (1,25D3/calcitriol) is a potential adjuvant therapy that confers antiproliferative and pro-differentiation effects in vitro, but has hadmixed results in clinical trials. The impact of the tumor microenvironment on 1,25D3 therapy in pa...
متن کاملInteraction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells.
Calcitriol (1,25-dihydroxyvitamin D(3)) inhibits the growth of a variety of cancer cells including human prostate cancer. Müllerian-inhibiting substance (MIS) also exhibits antiproliferative and proapoptotic actions on multiple cancer cells including human prostate cancer. In this study, we investigated whether calcitriol regulated MIS expression in prostate cancer, an action that might contrib...
متن کاملCalcitriol and genistein actions to inhibit the prostaglandin pathway: potential combination therapy to treat prostate cancer.
We present an overview of the prostaglandin (PG) pathway as a novel target for the treatment of prostate cancer (PCa) using a combination of calcitriol and genistein, both of which have known antiproliferative properties. Calcitriol inhibits the PG pathway in PCa cells in 3 separate ways: by decreasing cyclooxygenase-2 (COX-2) expression, stimulating 15-hydroxyprostaglandin dehydrogenase (15-PG...
متن کاملSynthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells
Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201) and tacalcitol (PRI-2191) were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the...
متن کامل