Radial profiles of seismic attenuation in the upper mantle based on physical models
نویسندگان
چکیده
S U M M A R Y Thermally activated, viscoelastic relaxation of the Earth’s materials is responsible for intrinsic attenuation of seismic waves. Seismic observations have been used to define layered radially symmetric attenuation models, independent of any constraints on temperature and composition. Here, we interpret free-oscillation and surface wave attenuation measurements in terms of physical structures, by using the available knowledge on the physical mechanisms that govern attenuation at upper-mantle (<400 km) conditions. We find that observations can be explained by relatively simple thermal and grain-size structures. The 1-D attenuation models obtained do not have any sharp gradients below 100 km, but fit the data equally well as the seismic models. The sharp gradients which characterize these models are therefore not required by the data. In spite of the large sensitivity of seismic observations to temperature, a definitive interpretation is limited by the unknown effects of pressure on anelasticity. Frequency dependence of anelasticity, as well as trade-offs with deeper attenuation structure and dependence on the elastic background model, are less important. Effects of water and dislocations can play an important role as well and further complicate the interpretation. Independent constraints on temperature and grain size expected around 100 km depth, help to constrain better the thermal and grain-size profiles at greater depth. For example, starting from a temperature of 1550 K at 100 km and assuming that the seismic attenuation is governed by the Faul & Jackson’s (2005) mechanism, we found that negative thermal gradients associated with several cm grain sizes (assuming low activation volume) or an adiabatic gradient associated with ∼1 cm grain size, can explain the data. A full waveform analysis, combining the effects on phase and amplitude of, respectively, elasticity and anelasticity, holds promise for further improving our knowledge on the average composition and thermal structure of the upper mantle.
منابع مشابه
Radial profiles of temperature and viscosity in the Earth’s mantle inferred from the geoid and lateral seismic structure
In the framework of dynamical modelling of the geoid, we have estimated basic features of the radial profile of temperature in the mantle. The applied parameterization of the geotherm directly characterizes thermal boundary layers and values of the thermal gradient in the upper and lower mantle. In the inverse modelling scheme these parameters are related to the observables (geoid and seismic s...
متن کاملRadial anisotropy in the European mantle: Tomographic studies explored in terms of mantle flow
[1] Previous studies have shown that radial seismic anisotropy as estimated from flow models is in good agreement with results from tomography at global scale, in particular underlying oceanic basins. However, the fit is typically poor at smaller scale lengths, particularly in tectonically complex regions. We conduct a comparative analysis of tomographically mapped and dynamically modeled radia...
متن کاملVelocity and Attenuation Structure of the Tibetan Lithosphere Under the Hi-CLIMB Array From the Modeling of Pn Attributes
Using seismic data from regional earthquakes in Tibet recorded by the Hi-CLIMB experiment, Pn attributes are used to constrain the velocity gradient and attenuation structure of the Tibetan lithosphere under the Hi-CLIMB array. Numerical modeling is performed using the spectral-element method (SEM) for laterally varying upper-mantle velocity and attenuation, and the seismic attributes considere...
متن کاملSeismic-wave Attenuation and the State of the Upper Mantle
Seismic-wave Attenuation and the state
متن کاملGlacial isostatic adjustment and the radial viscosity profile from inverse modeling
[1] A formal inverse procedure is used to infer radial mantle viscosity profiles from several observations related to the glacial isostatic adjustment process. The data sets consist of Late Pleistocene and Holocene sea level data from Scandinavia, the Barents Sea, Central Europe, Canada, and the far field, as well as observations of changes in the Earth’s rotation and gravitational field, and p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008